Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(11): 1361-1365
DOI: 10.1055/s-0037-1611841
DOI: 10.1055/s-0037-1611841
letter
Synthesis of β-Selenylated Cyclopentanones via Photoredox-Catalyzed Selenylation/Ring-Expansion Cascades of Alkenyl Cyclobutanols
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (Grant-No. NRF-2016-R1D1A1B03933723) and Soonchunhyang University Research Fund.Further Information
Publication History
Received: 19 April 2019
Accepted after revision: 08 May 2019
Publication Date:
29 May 2019 (online)
Abstract
A photoredox strategy to access β-selenated cyclic ketone derivatives through the coupling reaction of 1-(1-arylvinyl)cyclobutanols with diselenides under blue LED irradiation and an air atmosphere was developed. This reaction employs the easily accessible and shelf-stable diselenides as a selenium radical source, and the reaction has advantages of mild reaction conditions and broad substrate scope.
Key words
selenylation - semipinacol rearrangement - 1,2-alkyl migration - 1-(1-arylvinyl)cyclobutanols - photoredox reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611841.
- Supporting Information
-
References and Notes
- 1a Mugesh G, Singh HB. Acc. Chem. Res. 2002; 35: 226
- 1b Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 1c Kumar S, Johansson H, Kanda T, Engman L, Müller T, Bergenudd H, Jonsson M, Pedulli GF, Amorati R, Valgimigli L. J. Org. Chem. 2010; 75: 716
- 1d Sarma BK, Manna D, Minoura M, Mugesh G. J. Am. Chem. Soc. 2010; 132: 5364
- 1e Santi C. In Organoselenium Chemistry Between Synthesis and Biochemistry. Bentham Science; Sharjah: 2014
- 1f Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O. J. Med. Chem. 2015; 58: 9601
- 1g Mondal S, Manna D, Mugesh G. Angew. Chem. Int. Ed. 2015; 54: 9298
- 1h Pang Y, An B, Lou L, Zhang J, Yan J, Huang L, Li X, Yin S. J. Med. Chem. 2017; 60: 7300
- 1i Kumar S, Johansson H, Kanda T, Engman L, Müller T, Bergenudd H, Jonsson M. Eur. J. Org. Chem. 2017; 3055
- 2a Silveira CC, Braga AL, Vieira AS, Zeni G. J. Org. Chem. 2003; 68: 662
- 2b Kundu D, Ahammed S, Ranu BC. Org. Lett. 2014; 16: 1814
- 2c Luo J, Zhu Z, Liu Y, Zhao X. Org. Lett. 2015; 17: 3620
- 2d Verma A, Jana S, Prasad CD, Yadav A, Kumar S. Chem. Commun. 2016; 52: 4179
- 3a Zeni G, Ludtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032
- 3b Perin G, Lenardao EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277
- 3c Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 3d Abdo M, Zhang Y, Schramm VL, Knapp S. Org. Lett. 2010; 12: 2982
- 3e Rafique J, Saba S, Rosario AR, Braga AL. Chem. Eur. J. 2016; 22: 11854
- 3f Shu S, Fan Z, Yao Q, Zhang A. J. Org. Chem. 2016; 81: 5263
- 3g Sun K, Wang X, Lv Y, Li G, Jiao H, Dai C, Li Y, Zhanga C, Liu L. Chem. Commun. 2016; 52: 8471
- 4a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 4b Ivanova A, Arsenyan P. Coord. Chem. Rev. 2018; 370: 55
- 4c Zheng Y, He Y, Rong G, Zhang X, Weng Y, Dong K, Xu X, Mao J. Org. Lett. 2015; 17: 5444
- 4d Sun J, Zhang-Negrerie D, Du Y. Adv. Synth. Catal. 2016; 358: 2035
- 4e Qiu J.-K, Shan C, Wang D.-C, Wei P, Jiang B, Tu S.-J, Li G, Guo K. Adv. Synth. Catal. 2017; 359: 4332
- 4f Zhu Y.-Q, He J.-L, Niu Y.-X, Kang H.-Y, Han T.-F, Li H.-Y. J. Org. Chem. 2018; 83: 9958
- 4g Liu Y, Li C, Mu S, Li Y, Feng R, Sun K. Asian J. Org. Chem. 2018; 7: 720
- 4h Yu J.-M, Cai C. Org. Biomol. Chem. 2018; 16: 490
- 4i Zhao F, Sun T, Liu Z, Sun K, Zhang C, Wang X. Curr. Org. Chem. 2018; 22: 613
- 4j Wu P, Wu K, Wang L, Yu Z. Org. Lett. 2017; 19: 5450
- 4k Ricordi VG, Freitas CS, Perin G, Lenardão EJ, Jacob RG, Savegnago L, Alves D. Green Chem. 2012; 14: 1030
- 4l Zheng B, Gong Y, Xu H.-J. Tetrahedron 2013; 69: 5342
- 4m Kumar A, Kumar S. Tetrahedron 2014; 70: 1763
- 4n Jana S, Chakraborty A, Mondal S, Hajra A. RSC Adv. 2015; 5: 77534
- 4o Ricordi VG, Thurow S, Penteado F, Schumacher RF, Perin G, Lenardão EJ, Alves D. Adv. Synth. Catal. 2015; 357: 933
- 4p Yu S, Wan B, Li X. Org. Lett. 2015; 17: 58
- 4q Ferreira NL, Azeredo JB, Fiorentin BL, Braga AL. Eur. J. Org. Chem. 2015; 23: 5070
- 4r Mandal A, Sahoo H, Baidya M. Org. Lett. 2016; 18: 3202
- 4s Sahoo H, Mandal A, Selvakumar J, Baidya M. Eur. J. Org. Chem. 2016; 25: 4321
- 4t Gandeepan P, Koeller J, Ackermann L. ACS Catal. 2017; 7: 1030
- 4u Kibriya G, Samanta S, Singsardar M, Jana S, Hajra A. Eur. J. Org. Chem. 2017; 3055
- 4v Zhang Q.-B, Ban Y.-L, Yuan P.-F, Peng S.-J, Fang J.-G, Liu L.-ZW. Q. Green Chem. 2017; 19: 5559
- 4w Saba S, Rafique J, Franco MS, Schneider AR, Espíndola L, Silva DO, Brag AL. Org. Biomol. Chem. 2018; 16: 880
- 4x Kumaraswamy G, Ramesh V, Gangadhar M, Vijaykumar S. Asian J. Org. Chem. 2018; 7: 1689
- 5a Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal. 2018; 8: 7489
- 5b Zhang Y.-X, Jin R.-X, Yin H, Li Y, Wang X.-S. Org. Lett. 2018; 20: 7283
- 5c Nakafuku KM, Fosu SC, Nagib DA. J. Am. Chem. Soc. 2018; 140: 11202
- 5d Song ZL, Fan CA, Tu YQ. Chem. Rev. 2011; 111: 7523
- 5e Wang B, Tu YQ. Acc. Chem. Res. 2011; 44: 1207
- 5f Wang SH, Li BS, Tu YQ. Chem. Commun. 2014; 50: 2393
- 5g Chen ZM, Zhang XM, Tu YQ. Chem. Soc. Rev. 2015; 44: 5220
- 6a Zhang E, Fan CA, Tu YQ, Zhang FM, Song YL. J. Am. Chem. Soc. 2009; 131: 14626
- 6b Zhang QW, Fan CA, Zhang HJ, Tu YQ, Zhao YM, Gu P, Chen ZM. Angew. Chem. Int. Ed. 2009; 48: 8572
- 6c Romanov-Michailidis F, Guénée L, Alexakis A. Angew. Chem. Int. Ed. 2013; 52: 9266
- 6d Yin Q, You SL. Org. Lett. 2014; 16: 1810
- 6e Xu MH, Dai KL, Tu YQ, Zhang XM, Zhanga FM, Wanga SH. Chem. Commun. 2018; 54: 7685
- 6f Xi CC, Chen ZM, Zhang SY, Tu YQ. Org. Lett. 2018; 20: 4227
- 7a Weng W.-Z, Zhang B. Chem. Eur. J. 2018; 24: 10934
- 7b Shu XZ, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
- 7c Sahoo B, Li JL, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 11577
- 7d Suh CW, Kim DY. Tetrahedron Lett. 2015; 56: 5661
- 7e Woo SB, Kim DY. J. Fluorine Chem. 2015; 178: 214
- 7f Kwon SJ, Kim YJ, Kim DY. Tetrahedron Lett. 2016; 57: 4371
- 7g Kwon SJ, Kim DY. Org. Lett. 2016; 18: 4562
- 7h Kim YJ, Kim DY. J. Fluorine Chem. 2018; 211: 119
- 7i Kim YJ, Choo MH, Kim DY. Tetrahedron Lett. 2018; 59: 3864
- 7j Kim YJ, Kim DY. Org. Lett. 2019; 21: 1021
- 7k Jung HI, Kim Y, Kim DY. Org. Biomol. Chem. 2019; 17: 3319
- 7l Kim Y, Kim DY. Asian J. Org. Chem. 2019; 8: 679
- 7m Kim YJ, Kim DY. Tetrahedron Lett. 2019; 60: 1287
- 7n Honeker R, Sanchez RA. G, Hopkinson MN, Glorius F. Chem. Eur. J. 2016; 22: 4395
- 7o Bergonzini G, Cassani C, Olsson HL, Hörberg J, Wallentin CJ. Chem. Eur. J. 2016; 22: 3292
- 7p Weng WZ, Sun JG, Li P, Zhang B. Chem. Eur. J. 2017; 23: 9752
- 7q Zhang JJ. Chin. J. Chem. 2017; 35: 311
- 7r Wu H, Wang Q, Zhu J. Chem. Eur. J. 2017; 23: 13037
- 7s Yao S, Zhang K, Zhou QQ, Zhao Y, Shi DQ, Xiao WJ. Chem. Commun. 2018; 54: 8096
- 8a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 8b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 8c Maity S, Zheng N. Synlett 2012; 23: 1851
- 8d Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
- 8e Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 8f Maity S, Zheng N. Synlett 2012; 23: 1851
- 8g Xi Y.-M, Yi H, Lei A.-W. Org. Biomol. Chem. 2013; 11: 2387
- 8h Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
- 8i Schultz DM, Yoon TP. Science 2014; 343: 985
- 8j Koike T, Akita M. Top. Catal. 2014; 57: 967
- 8k Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
- 8l Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
- 8m Majek M, Filace F, Wangelin AJ. Beilstein J. Org. Chem. 2014; 10: 981
- 8n Meggers E. Chem. Commun. 2015; 51: 3290
- 8o Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
- 8p Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
- 8q Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 8r Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 8s Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 8t Garbarino S, Ravelli D, Protti S, Basso A. Angew. Chem. Int. Ed. 2016; 55: 15476
- 8u Matsui JK, Lang SB, Heitz DR, Molander GA. ACS. Catal. 2017; 7: 2564
- 8v Bogdos MK, Pinard E, Murphy JA. Beilstein J. Org. Chem. 2018; 14: 2035
- 9a Kang YK, Kim SM, Kim DY. J. Am. Chem. Soc. 2010; 132: 11847
- 9b Kang YK, Kim DY. Adv. Synth. Catal. 2013; 355: 3131
- 9c Suh CW, Woo SB, Kim DY. Asian J. Org. Chem. 2014; 3: 399
- 9d Kang YK, Kim DY. Chem. Commun. 2014; 50: 222
- 9e Suh CW, Kim DY. Org. Lett. 2014; 16: 5374
- 9f Kwon SJ, Kim DY. Chem. Rec. 2016; 16: 1191
- 9g Suh CW, Kwon SJ, Kim DY. Org. Lett. 2017; 19: 1334
- 9h Jeong HJ, Kim DY. Org. Lett. 2018; 20: 2944
- 10a Dowd P, Choi S.-C. J. Am. Chem. Soc. 1987; 109: 3493
- 10b Dowd P, Choi S.-C. J. Am. Chem. Soc. 1987; 109: 6548
- 10c Beckwith AL. J, O’Shea DM, Westwood SW. J. Chem. Soc., Chem. Commun. 1987; 666
- 10d Beckwith AL. J, O’Shea DM, Westwood SW. J. Am. Chem. Soc. 1988; 110: 2565
- 10e Shono T, Kise N, Uematsu N, Morimoto S, Okazaki E. J. Org. Chem. 1990; 55: 5037
- 10f Dowd P, Zhang W. Chem. Rev. 1993; 93: 2091
- 10g Hasegawa E, Mori K, Tsuji S, Nemoto K, Ohta T, Iwamoto H. Aust. J. Chem. 2015; 68: 1648
- 10h Hasegawa E, Nemoto K, Nagumo R, Tayama E, Iwamoto H. J. Org. Chem. 2016; 81: 2692
- 10i Liu Y, Yeung Y.-Y. Org. Lett. 2017; 19: 1422
- 11a Ogawa A, Obayashi R, Doi M, Sonoda N, Hirao T. J. Org. Chem. 1998; 63: 4277
- 11b Pandey G, Gadre SR. Acc. Chem. Res. 2004; 37: 201
- 11c Zhang Q.-B, Ban Y.-L, Yuan P.-F, Peng S.-J, Fang J.-G, Wu L.-Z, Liu Q. Green Chem. 2017; 19: 5559
- 11d Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
- 12 General Procedure for Photoredox Selenylation/Ring-Expansion Sequences of Alkenyl Cyclobutanols An oven-dried flask equipped with a magnetic stir bar was charged with 1-(1-arylvinyl)cyclobutanols 1 (0.1 mmol), diselenide 2 (0.06 mmol), Ru(bpy)3Cl2·6H2O (2.2 mg, 3 μmol), and acetonitrile (1 mL) under air. The reaction mixture was stirred for 8–25 h under irradiation of blue LEDs (5 W, 455 nm). The reaction mixture was concentrated under vacuum and purified by chromatography on silica gel (ethyl acetate/n-hexane = 1:20) to afford β-selenated cyclic ketone derivatives 3.
- 13 2-Phenyl-2-[(phenylselanyl)methyl]cyclopentanone (3a) Yield 83%; yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.42–7.37 (m, 4 H), 7.34–7.30 (m, 2 H), 7.27–7.23 (m, 1 H), 7.21–7.18 (m, 3 H), 3.39 (d, J = 12 Hz, 1 H), 3.30 (d, J = 12.4 Hz, 1 H), 2.70–2.65 (m, 1 H), 2.40–2.20 (m, 3 H), 2.00–1.90 (m, 1 H), 1.84–1.73 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 217.9, 138.4, 132.6, 131.0, 128.9, 128.7, 127.4, 126.8, 126.7, 57.8, 37.8, 37.4, 33.6, 18.4. HRMS (ESI): m/z calcd for C18H18OSe [M]+ : 330.0523; found: 330.0527.
Reviews for reactions with diselenides, see:
For selected examples for the reaction of diselenides with various substrates, see:
Selected recent reviews for difunctionalization of alkenes, see:
Reviews for semipinacol-type rearrangement, see:
Selected recent examples, see:
Review for radical-mediated 1,2-migration of allyl alcohols, see:
For selected examples, see:
For representative recent reviews and papers for photocatalysis, see:
For a selection of our recent work on C–H activation, see: