RSS-Feed abonnieren
DOI: 10.1055/s-0037-1611843
Organocerium: A New Contender for Halogen–Metal Exchanges
The authors are grateful to the Fonds der Chemischen Industrie and the Ludwig-Maximilians Universität for financial support.Publikationsverlauf
Received: 05. April 2019
Accepted after revision: 07. Mai 2019
Publikationsdatum:
03. Juni 2019 (online)
Abstract
In the context of our current research on dependable and sustainable methods for C–C bond-forming reactions, we have recently developed new strategies to generate organocerium reagents through simple bromide–cerium exchanges. n-Bu3Ce enabled a fast and general access to functionalized triaryl- and alkenyl cerium species from the corresponding aryl- and alkenyl bromides. A broad range of these new organocerium species was engaged in Zweifel’s olefination, allowing for the synthesis of widely substituted alkene derivatives in a stereospecific way. Herein, we place the formation of organocerium species in the context of known organometallic reagents (Li, Mg, Zn, Cu, Ca, La, and Sm) generated through halogen–metal exchange reactions and their application in further transformations.
-
References
- 1 Prévost C. Bull. Soc. Chim. Fr. 1931; 49: 1372
- 2 Anthore-Dalion L, Benischke AD, Wei B, Berionni G, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 4046
- 3a Rogers HR, Houk J. J. Am. Chem. Soc. 1982; 104: 522
- 3b Reich HJ, Phillips NH, Reich IL. J. Am. Chem. Soc. 1985; 107: 4101
- 3c Bailey WF, Patricia JJ. J. Organomet. Chem. 1988; 352: 1
- 3d Jedlicka B, Crabtree RH, Siebahn PE. M. Organometallics 1997; 16: 6021
- 3e Reich HJ. J. Org. Chem. 2012; 77: 5471
- 4a Gilman H, Langham W, Jacoby AL. J. Am. Chem. Soc. 1939; 61: 106
- 4b Jones RG, Gilman H. Org. React. 1951; 6: 339
- 5 Wittig G, Pockels U, Dröge H. Chem. Ber. 1938; 71: 1903
- 6a Lau KS, Schlosser M. J. Org. Chem. 1978; 43: 1595
- 6b Neumann H, Seebach D. Tetrahedron Lett. 1976; 17: 4839
- 6c Bailey WF, Punzalan ER. J. Org. Chem. 1990; 55: 5404
- 7a Toth JE, Fuchs PL. J. Org. Chem. 1986; 52: 473
- 7b Bogenstatter M, Limberg A, Overman LE, Tomasi AL. J. Am. Chem. Soc. 1999; 121: 12206
- 7c Myers AG, Goldberg SD. Angew. Chem. Int. Ed. 2000; 39: 2732
- 8 Overmann LE, Ricca DJ, Tran VD. J. Am. Chem. Soc. 1997; 119: 12031
- 9 Koch A, Wirgenings M, Krieck S, Görls H, Pohnert G, Westerhausen M. Organometallics 2017; 36: 3981
- 10a Benischke AD, Anthore-Dalion L, Berionni G, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 16390
- 10b Benischke AD, Anthore-Dalion L, Kohl F, Knochel P. Chem. Eur. J. 2018; 24: 11103
- 11a Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapoutnis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
- 11b Barl NM, Werner V, Sämann C, Knochel P. Heterocycles 2014; 88: 827
- 11c Ziegler DS, Wei B, Knochel P. Chem. Eur. J. 2019; 25: 2695
- 12a Boymond L, Rottländer M, Cahiez G, Knochel P. Angew. Chem. Int. Ed. 1998; 37: 1701
- 12b Inoue A, Kitagawa K, Shinokubo H, Oshima K. J. Org. Chem. 2001; 66: 4333
- 12c Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
- 13 Ren H, Krasovskiy A, Knochel P. Org. Lett. 2004; 6: 4215
- 14 Tilly D, Chevallier F, Mongin F, Gros PC. Chem. Rev. 2014; 114: 1207
- 15a Harada T, Hattori K, Katsuhira T, Oku A. Tetrahedron Lett. 1989; 30: 6035
- 15b Harada T, Kotani Y, Katsuhira T, Oku A. Tetrahedron Lett. 1991; 32: 1573
- 15c Klement I, Knochel P. Tetrahedron Lett. 1994; 35: 1177
- 15d Kondo Y, Takazawa N, Yamazaki C, Sakamoto T. J. Org. Chem. 1994; 59: 4717
- 15e Micouin L, Knochel P. Synlett 1997; 327
- 15f Uchiyama M, Miyoshi T, Kajihara Y, Sakamoto T, Otani Y, Ohwada T, Kondo Y. J. Am. Chem. Soc. 2002; 124: 8514
- 15g Uchiyama M, Furuyama T, Kobayashi M, Matsumoto Y, Tanaka K. J. Am. Chem. Soc. 2006; 128: 8404
- 15h Uchiyama M, Kobayashi Y, Furuyama T, Nakamura S, Kajihara Y, Miyoshi T, Sakamoto T, Kondo Y, Morokuma K. J. Am. Chem. Soc. 2008; 130: 472
- 15i Nakamura S, Liu C.-Y, Muranaka A, Uchiyama M. Chem. Eur. J. 2009; 15: 5686
- 16 Simmons HE, Smith RD. J. Am. Chem. Soc. 1959; 81: 4256
- 17a Furukawa J, Kawabata N, Nishimura J. Tetrahedron Lett. 1966; 3353
- 17b Furukawa J, Kawabata N, Nishimura J. Tetrahedron 1968; 24: 53
- 18a Kneisel FF, Dochnahl M, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 1017
- 18b Gong L.-Z, Knochel P. Synlett 2005; 267
- 19 Chau NT. T, Meyer M, Komagawa S, Chevallier F, Fort Y, Uchiyama M, Mongin F, Gros P. Chem. Eur. J. 2010; 16: 12425
- 20a Bluemke TD, Clegg W, García-Alvarez P, Kennedy AR, Koszinowski K, McCall MD, Russo L, Hevia E. Chem. Sci. 2014; 5: 3552
- 20b Hevia E, Chua JZ, García-Álvarez P, Kennedy AR, McCall MD. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 5294
- 21a Corey EJ, Posner GH. J. Am. Chem. Soc. 1968; 90: 5615
- 21b Kondo Y, Matsudaira T, Sato J, Maruka N, Sakamoto T. Angew. Chem., Int. Ed. Engl. 1996; 35: 736
- 22a Piazza C, Knochel P. Angew. Chem. Int. Ed. 2002; 41: 3263
- 22b Yang X, Rotter T, Piazza C, Knochel P. Org. Lett. 2003; 5: 1229
- 22c Yang X, Althammer A, Knochel P. Org. Lett. 2004; 6: 1665
- 23a Eisold M, Baumann AN, Kiefl GM, Emmerling ST, Didier D. Chem. Eur. J. 2017; 23: 1634
- 23b Baumann AN, Eisold M, Music A, Haas G, Kiw YM, Didier D. Org. Lett. 2017; 19: 5681
- 23c Baumann AN, Eisold M, Music A, Didier D. Synthesis 2018; 50: 3149
- 23d Eisold M, Müller-Deku A, Reiners F, Didier D. Org. Lett. 2018; 20: 4654
- 24a Zweifel G, Arzoumanian H, Whitney CC. J. Am. Chem. Soc. 1967; 89: 3652
- 24b Zweifel G, Polston NL, Whitney CC. J. Am. Chem. Soc. 1968; 90: 6243
- 24c Negishi E, Lew G, Yoshida T. J. Chem. Soc., Chem. Commun. 1973; 22: 874
- 24d Evans DA, Crawford TC, Thomas RC, Walker JA. J. Org. Chem. 1976; 41: 3947
- 24e Brown HC, Bhat NG. J. Org. Chem. 1988; 53: 6009
- 25a Armstrong RJ, Aggarwal VK. Synthesis 2017; 49: 3323
- 25b Armstrong RJ, Niwetmarin W, Aggarwal VK. Org. Lett. 2017; 19: 2762
- 26 Music A, Baumann AN, Spieß P, Hilgert N, Köllen M, Didier D. Org. Lett. 2019; 21: 2189
- 27 Music A, Hoarau C, Hilgert N, Zischka F, Didier D. Angew. Chem. Int. Ed. 2019; 58: 1188
Selected examples from the literature:
For representative examples, see: