Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(12): 1469-1473
DOI: 10.1055/s-0037-1611847
DOI: 10.1055/s-0037-1611847
letter
Copper Acetate Aerobic Oxidative Synthesis of Pyrido[1,2-a]benzimidazoles from Aminopyridines and Phenylboronic Acids
We acknowledge financial support from the Research Funds for the Shaanxi University of Chinese Medicine (2016PY19), Youth Talent Support Project of Shaanxi Association for Science and Technology (20170406). University Students’ Innovative Undertaking of Shaanxi Province (201823033), University Students’ Innovative Undertaking of Shaanxi University of Chinese Medicine (201807028), the Chinese Medicine Project of Shaanxi Province (ZYMS005) and the National Natural Science Foundation of China (81001669).Further Information
Publication History
Received: 06 April 2019
Accepted after revision: 13 May 2019
Publication Date:
06 June 2019 (online)

Abstract
Pyrido[1,2-a]benzimidazoles, which show interesting and potentially useful biological activities, have drawn extensive attention from chemists. A straightforward copper acetate-oxidative one-pot synthesis of these compounds from 2-aminopyridines and phenylboronic acids through C–N bond formation and C–H bond activation was developed as a simple and convenient method.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611847.
- Supporting Information
-
References and Notes
- 1 Bagdi AK, Santra S, Monir K, Hajra A. Chem. Commun. 2015; 51: 1555
- 2a Rupert KC, Henry JR, Dodd JH, Wadsworth SA, Cavender DE, Olini GC, Fahmy B, Siekierka J. Bioorg. Med. Chem. Lett. 2003; 13: 347
- 2b Moraski GC, Markley LD, Hipskind PA, Boshoff H, Cho S, Franzblau SG, Miller MJ. ACS Med. Chem. Lett. 2011; 2: 466
- 3 Bae J.-S, Lee D.-W, Lee D.-H, Jeong D.-S. WO 2007011163, 2007
- 4 Takeshita H, Watanabe J, Kimura Y, Kawakami K, Takahashi H, Takemura M, Kitamura A, Someya K, Nakajima R. Bioorg. Med. Chem. Lett. 2010; 20: 3893
- 5 Refaat HM. Med. Chem. Res. 2012; 21: 1253
- 6 Ndakala AJ, Gessner RK, Gitari PW, October N, White KL, Hudson A, Fakorede F, Shackleford DM, Kaiser M, Yeates C, Charman SA, Chibale K. J. Med. Chem. 2011; 54: 4581
- 7 Jardosh HH, Sangani CB, Patel MP, Patel RG. Chin. Chem. Lett. 2013; 24: 123
- 8 Rasheed S, Rao DN, Das P. J. Org. Chem. 2015; 80: 9321
- 9a Qian G, Liu B, Tan Q, Zhang S, Xu B. Eur. J. Org. Chem. 2014; 4837
- 9b Rao DN, Rasheed S, Vishwakarma RA, Ras P. RSC Adv. 2014; 4: 25600
- 10 Yan CG, Wang QF, Song XK, Sun J. J. Org. Chem. 2009; 74: 710
- 11 Wu Z, Huang Q, Zhou X, Yu L, Yu L, Li Z, Wu D. Eur. J. Org. Chem. 2011; 5242
- 12 Barolo SM, Wang Y, Rossi RA, Cuny GD. Tetrahedron 2013; 69: 5487
- 13 Panda K, Suresh JR, Ila H, Junjappa H. J. Org. Chem. 2003; 68: 3498
- 14 Liang D, He Y, Liu L, Zhu Q. Org. Lett. 2013; 15: 3476
- 15 Ibrahim MA. Tetrahedron 2013; 69: 6861
- 16 Chen J, Natte K, Man NY. T, Stewart SG, Wu X.-F. Tetrahedron Lett. 2015; 56: 4843
- 17 Wang H, Wang Y, Peng C, Zhang J, Zhu Q. J. Am. Chem. Soc. 2010; 132: 13217
- 18 Masters K.-S, Rauws TR. M, Yadav AK, Herrebout WA, Van der Veken B, Maes BU. W. Chem. Eur. J. 2011; 17: 6315
- 19a Yan H, Yang SZ, Gao XA, Zhou K, Ma C, Yan RL, Huang GS. Synlett 2012; 2961
- 19b Yan H, Yan R, Yang S, Gao X, Wang Y, Huang G, Liang Y. Chem. Asian J. 2012; 7: 2028
- 19c Yan R.-L, Yan H, Ma C, Ren Z.-Y, Gao X.-A, Huang G.-S, Liang Y.-M. J. Org. Chem. 2012; 77: 2024
- 19d Yan H, Ma Y, Sun Y, Ma C, Wang Y, Ren X, Huang G. Tetrahedron 2014; 70: 2761
- 19e Yan H, Wang Y, Pan C, Zhang H, Yang S, Ren X, Li J, Huang G. Eur. J. Org. Chem. 2014; 2754
- 19f Hu T, Yan H, Liu X, Wu C, Fan Y, Huang J, Huang G. Synlett 2015; 26: 2866
- 19g Zhou X, Yan H, Ma C, He Y, Li Y, Cao J, Yan R, Huang G. J. Org. Chem. 2016; 81: 25
- 20 Pyrido[1,2-a ]benzimidazole (3aa); Typical Procedure An oven-dried Schlenk tube was charged with 2-aminopyridine (1a; 0.32 mmol), PhB(OH)2 (2a; 0.38 mmol), and Cu(OAc)2 (29 mg, 0.16 mmol). The Schlenk tube was sealed and then evacuated and backfilled with O2 (three cycles). DMSO (2 mL) was added, and the mixture was stirred at 120 °C for 36 h then cooled to r.t. The solvent was diluted with EtOAc (10 mL), and the mixture was washed with brine (5 mL) then dried (Na2SO4) and concentrated under vacuum. The residue was purified by column chromatography (silica gel, PE–EtOAc) to give a yellow solid; yield: 43 mg (80%); mp 174–176 °C. IR (neat): 3057, 3018, 1641, 1502, 1466, 1356, 1258, 1226, 1144, 756, 723 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.42 (dd, J = 6.8, 1.2 Hz, 1 H), 7.94 (d, J = 8.4 Hz, 1 H), 7.86 (d, J = 8.0 Hz, 1 H), 7.68 (dd, J = 9.2, 0.8 Hz, 1 H), 7.54–7.51 (m, 1 H), 7.42–7.34 (m, 2 H), 6.82 (t, J = 6.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 148.4, 144.5, 129.2, 128.6, 125.6, 125.1, 120.9, 119.9, 118.0, 110.3, 110.2. HRMS (ESI): m/z [M + H]+ calcd for C11H9N2: 169.0760; found: 169.0757.
- 21 Han Y, Zhang M, Zhang Y.-Q, Zhang Z.-H. Green Chem. 2018; 20: 4891