Synthesis 2019; 51(20): 3765-3783
DOI: 10.1055/s-0037-1611863
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis of 5-Substituted 1H-Tetrazoles: A Complete Survey (2013–2018)

Rupali Mittal
,
Satish K. Awasthi
Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India   Email: satishpna@gmail.com
› Author Affiliations
R.M. gratefully acknowledges University of Delhi for award of Non-Net Fellowship. S.K.A. acknowledges University of Delhi and DST Purse Grant Phase-II for research grant.
Further Information

Publication History

Received: 06 April 2019

Accepted after revision: 16 May 2019

Publication Date:
01 July 2019 (online)


Dedicated in the memory of my beloved brother, the late Mr. Sushil Kumar Awasthi.

Abstract

Tetrazoles are synthetic organic heterocyclic compounds comprising of high nitrogen content among stable heterocycles. Tetrazoles, chiefly 5-substituted 1H-tetrazoles have been used as a bioisosteric replacement for carboxylic acids in medicinal chemistry. Various clinical drugs, including losartan, cefazolin, and alfentanil, contain the tetrazole moiety. There have been significant developments in the synthesis of 5-substituted 1H-tetrazoles. Researchers are still working to develop more efficient and ecofriendly methods for their synthesis. In this review, we provide a comprehensive discussion of the recent advancements in the field of synthesis of 5-substituted 1H-tetrazoles.

1 Introduction

2 The Role of 5-Substituted 1H-Tetrazoles in Medicinal Chemistry

3 Synthesis of 5-Substituted 1H-Tetrazoles

3.1 Microwave-Assisted Synthesis

3.2 Heterogeneous Catalysts

3.3 Nanoparticles as Heterogeneous Catalysts

3.4 Miscellaneous Methods

4 Sartans: A Class of Tetrazole-Based Commercial Drugs

5 Conclusions