Subscribe to RSS
DOI: 10.1055/s-0037-1611872
New Alkene Cyclopropanation Reactions Enabled by Photoredox Catalysis via Radical Carbenoids
The ICIQ Starting Career Programme, Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación (CTQ2016-75311-P, AEI/FEDER-EU), the CELLEX Foundation through the CELLEX-ICIQ high-throughput experimentation platform and the CERCA Programme (Generalitat de Catalunya) are gratefully acknowledged for financial support. We thank the CELLEX Foundation for a predoctoral fellowship to A.G.H. M.G.S. is very grateful to the organizing committee of the 2018 Bürgenstock Conference and the Swiss Chemical Society for a JSP fellowship.Publication History
Received: 11 March 2019
Accepted after revision: 04 June 2019
Publication Date:
11 June 2019 (online)
Published as part of the Bürgenstock Special Section 2018 Future Stars in Organic Chemistry
Abstract
We describe the recent emergence of a new approach for the synthesis of cyclopropane rings by means of photoredox catalysis. This methodology relies on the photocatalytic generation of radical carbenoids or carbenoid-like radicals as cyclopropanating species, and is characterized by excellent functional group tolerance, chemoselectivity and the ability to form cyclopropanes with excellent control from E/Z alkene mixtures. The mild reaction conditions and employment of user-friendly reagents are highly attractive features that may lead to this approach being used in academic and industrial laboratories.
1 Introduction
2 Photoredox-Catalyzed Alkene Cyclopropanations with Radical Carbenoids
3 Conclusions and Outlook
-
References
- 1a Chen DY.-K, Pouwer RH, Richard JA. Chem. Soc. Rev. 2012; 41: 4631
- 1b Salaün J. Top. Curr. Chem. 2000; 207: 1
- 2a Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 2b Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 3 Kulinkovich OG. Cyclopropanes in Organic Synthesis . John Wiley & Sons; Hoboken: 2015
- 4 Wessjohann LA, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
- 5a Lebel H, Marcoux JF, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
- 5b Müller P. Acc. Chem. Res. 2004; 37: 243
- 5c Thankachan AP, Sindhu KS, Keerthi Krishnan K, Anilkumar G. Org. Biomol. Chem. 2015; 13: 8780
- 5d Qian D, Zhang J. Chem. Rev. 2015; 44: 677
- 5e Pons A, Poisson T, Pannecoucke X, Charette AB, Jubault P. Synthesis 2016; 48: 4060
- 5f Trushkov IV. Isr. J. Chem. 2016; 56: 369
- 5g Bos D, Poisson T, Pannecoucke X, Charette AB, Jubault P. Chem. Eur. J. 2017; 23: 4950
- 5h Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
- 5i Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
- 5j Coelho PS, Brustard EM, Kannan A, Arnold FH. Science 2013; 339: 307
- 5k Künzi SA, Manuel Sarria Toro J, den Hartog T, Chen P. Angew. Chem. Int. Ed. 2015; 54: 10670
- 5l Bordeaux M, Tyagi V, Fasan R. Angew. Chem. Int. Ed. 2015; 54: 1744 ; Angew. Chem. 2015, 127, 1764
- 5m Pal S, Zhou YY, Uyeda C. J. Am. Chem. Soc. 2017; 139: 11686
- 5n Werth J, Uyeda C. Chem. Sci. 2018; 9: 1604
- 5o Chen K, Zhang S.-Q, Brandenberg OF, Hong X, Arnold FH. J. Am. Chem. Soc. 2018; 140: 16402
- 5p Jurberg ID, Davies HM. L. Chem. Sci. 2018; 9: 5112
- 5q Montesinos-Magraner M, Costantini M, Ramírez-Contreras R, Muratore ME, Johansson MJ, Mendoza A. Angew. Chem. Int. Ed. 2019; 58: 5930
- 6a Solorio-Alvarado CR, Wang Y, Echavarren AM. J. Am. Chem. Soc. 2011; 133: 11952
- 6b Vicente R, González J, Riesgo L, González J, López LA. Angew. Chem. Int. Ed. 2012; 51: 8063 ; Angew. Chem. 2017, 124, 8187
- 6c Cotugno P, Monopoli A, Ciminale F, Milella A, Nacci A. Angew. Chem. Int. Ed. 2014; 53: 13563 ; Angew. Chem. 2014, 126, 1378
- 6d Mao J, Zhang S.-Q, Shi B.-F, Bao W. Chem. Commun. 2014; 50: 3692
- 6e Piou T, Rovis T. J. Am. Chem. Soc. 2014; 136: 11292
- 6f González MJ, González J, López LA, Vicente R. Angew. Chem. Int. Ed. 2015; 54: 12139 ; Angew. Chem. 2015, 127, 1230
- 6g Manna S, Antonchick AP. Angew. Chem. Int. Ed. 2015; 54: 14845 ; Angew. Chem. 2015, 127, 1505
- 6h Xu G, Renaud P. Angew. Chem. Int. Ed. 2016; 55: 3657 ; Angew. Chem. 2016, 128, 3721
- 6i Bajaj P, Sreenilayam G, Tyagi V, Fasan R. Angew. Chem. Int. Ed. 2016; 55: 16110 ; Angew. Chem. 2016, 128, 2634
- 6j Mato M, Herlé B, Holstein PM, Echavarren AM. ACS Catal. 2017; 7: 3668
- 6k Herlé B, Echavarren AM. Org. Lett. 2018; 20: 4341
- 6l Jankins TC, Fayzullin RR, Khaskin E. Organometallics 2018; 37: 2609
- 6m Phipps EJ. T, Rovis T. J. Am. Chem. Soc. 2019; 141: 6807
- 7a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 7b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 7c Schultz DM, Yoon TP. Science 2014; 343: 1239176
- 7d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 7e Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
- 8a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
- 8b Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
- 8c Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
- 9a Beecraft RA, Davidson RS. Goodwin D. Tetrahedron Lett. 1983; 24: 5673
- 9b Pandey G. Top. Curr. Chem. 1993; 168: 175
- 9c Cossy J, Ranaivosata J.-L, Bellosta V. Tetrahedron Lett. 1994; 35: 8161
- 9d Cossy J. Photoinduced Electron Transfer in Radical Reactions. In Radicals in Organic Synthesis. Renaud P, Sibi MP. Wiley-VCH; Weinheim: 2001: 229
- 10a Curran DP, Chen M.-H, Kim D. J. Am. Chem. Soc. 1986; 108: 2489
- 10b Curran DP, Chen M.-H. Tetrahedron Lett. 1985; 26: 4991
- 10c Byers J. Atom Transfer Reactions. In Radicals in Organic Synthesis. Renaud P, Sibi MP. Wiley-VCH; Weinheim: 2001. 72
- 11a Blomstrom DE, Herbig K, Simmons HE. J. Org. Chem. 1965; 30: 959
- 11b Pienta NJ, Kropp PJ. J. Am. Chem. Soc. 1978; 100: 655
- 11c Kropp PJ, Pienta NJ, Sawyer JA, Polniaszek RP. Tetrahedron 1981; 37: 3229
- 11d Kropp PJ. Acc. Chem. Res. 1984; 17: 131
- 11e Phillips DL, Fang WH, Zheng X. J. Am. Chem. Soc. 2001; 123: 4197
- 12 del Hoyo AM, Herraiz AG, Suero MG. Angew. Chem. Int. Ed. 2017; 56: 1610
- 13a Curran DP, Gabarda AE. Tetrahedron 1999; 55: 3327
- 13b Ohkita T, Tsuchiya Y, Togo H. Tetrahedron 2008; 64: 7247
- 14 del Hoyo AM, Suero MG. Eur. J. Org. Chem. 2017; 2122
- 15 Nozaki K, Oshima K, Utimoto K. Bull. Chem. Soc. Jpn. 1991; 64: 403
- 16 Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
- 17 Analogous chloromethyl and bromomethyl silicate reagents were also synthesized and tested. These reagents were not as efficient as the iodomethyl silicate reagent, and only for a few substrates was the chloromethyl silicate reagent competent. See ref. 16 for further details.
- 18 Guo T, Zhang L, Liu X, Fang Y, Jin X, Yang Y, Li Y, Chen B, Ouyang M. Adv. Synth. Catal. 2018; 360: 4459
- 19a Charette AB, Cote B, Marcoux JF. J. Am. Chem. Soc. 1991; 113: 8166
- 19b Charette AB, Lemay J. Angew. Chem. Int. Ed. 1997; 36: 1090
- 19c Charette AB, Juteau H, Lebel H, Molinaro C. J. Am. Chem. Soc. 1998; 120: 11943
- 20 Benoit G, Charette AB. J. Am. Chem. Soc. 2017; 139: 1364
- 21 Sayes M, Benoit G, Charette AB. Angew. Chem. Int. Ed. 2018; 57: 13514
- 22 During the revision of this review, we became aware of a borocyclopropanation related to that of Charette, see: Ohtani T, Tsuchiya Y, Uraguchi D, Ooi T. Org. Chem. Front. 2019; 6: 1734
- 23 Li P, Zhao J, Shi L, Wang J, Shi X, Li F. Nat. Commun. 2018; 9: 1972
- 24a Sarabia FJ, Ferreira EM. Org. Lett. 2017; 19: 2865
- 24b Wang Z, Herraiz AG, del Hoyo AM, Suero MG. Nature 2018; 554: 86
- 24c Zhang Y, Qian R, Zheng X, Zeng Y, Sun J, Chen Y, Ding A, Guo H. Chem. Commun. 2015; 51: 54
- 24d Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15430
- 25a Léonel E, Dolhem E, Devaud M, Paugam JP, Nédélec JY. Electrochim. Acta 1997; 42: 2125
- 25b Njue CK, Nuthakki B, Vaze A, Bobbitt JM, Rusling JF. Electrochem. Commun. 2001; 3: 733
For reviews on cyclopropanation reactions, see:
For recent selected examples, see:
For recent reviews, see:
The use of diiodomethane under UV-light irradiation for cyclopropanation reactions was firstly carried out by Simmons and Kropp; an iodomethyl radical (•)CH2I and an iodomethyl cation (+)CH2I were proposed as reactive intermediates:
Later, density functional theory investigations performed by Phillips and co-workers suggested iso-diiodomethane (CH2=I–I) as an intermediate:
For alternative reports of alkene cyclopropanations enabled by photoredox catalysis that do not involve radical carbenoids, see:
The use of electrochemistry for alkene cyclopropanation with gem-dihaloalkanes has been demonstrated scarcely in the past, and the involvement of halomethyl radicals was proposed, see: