Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(15): 1815-1819
DOI: 10.1055/s-0037-1611894
DOI: 10.1055/s-0037-1611894
letter
Room-Temperature Ionic Liquids (RTILs) as Green Media for Metal- and Base-Free ipso-Hydroxylation of Arylboronic Acids
Further Information
Publication History
Received: 26 June 2019
Accepted after revision: 03 July 2019
Publication Date:
17 July 2019 (online)
Abstract
The oxidative hydroxylation of arylboronic acids to the corresponding phenolic compounds under metal- and base-free aerobic conditions is successfully demonstrated on a greener media. Hydrogen peroxide, as an eco-friendly oxidant, is compatible with green mediates room-temperature ionic liquids (RTIL)s, providing hydroxylation products of arylboronic acids in an efficient manner. The RTIL support is particularly interesting for its reusability.
Key words
room-temperature ionic liquid - ipso-hydroxylation - arylboronic acid - phenol - hydrogen peroxideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611894.
- Supporting Information
-
References and Notes
- 1a Tyman JH. P. In Synthetic and Natural Phenols . Elsevier; New York: 1996
- 1b Rappoport Z. In The Chemistry of Phenols . Wiley-VCH; Weinheim: 2003
- 2a Ainley AD, Challenger F. J. Chem. Soc. 1930; 2171
- 2b Zhu C, Falck JR. Adv. Synth. Catal. 2014; 356: 2395
- 2c Fyfe CA. The Chemistry of the Hydroxyl Group, Part 1, Vol. 1. Wiley Interscience; New York: 1971
- 3 Zhu C, Wang R, Falck JR. Org. Lett. 2012; 14: 3497
- 4a Molander GA, Cavalcanti LN. J. Org. Chem. 2011; 76: 623
- 4b Maleczka Jr RE, Shi F, Holmes D, Smith III MR. J. Am. Chem. Soc. 2003; 125: 7792
- 4c Travis BR, Ciaramitaro BP, Borhan B. Eur. J. Org. Chem. 2002; 3429
- 4d Webb KS, Levy D. Tetrahedron Lett. 1995; 36: 5117
- 5 Chatterjee N, Goswami A. Tetrahedron Lett. 2013; 56: 1524
- 6 Kianmehr E, Yahyaee M, Tabatabai K. Tetrahedron Lett. 2007; 48: 2713
- 8a Toyao T, Ueno N, Miyahara K, Matsui Y, Kim T.-H, Horiuchi Y, Ikeda H, Matsuoka M. Chem. Commun. 2015; 51: 16103
- 8b Zhang MJ, Li HX, Li HY, Lang JP. Dalton Trans. 2016; 45: 17759
- 8c Yu X, Cohen SM. Chem. Commun. 2015; 51: 9880
- 8d Luo J, Zhang X, Zhang J. ACS Catal. 2015; 5: 2250
- 8e Pitre SP, McTiernan CD, Ismaili H, Scaiano JC. J. Am. Chem. Soc. 2013; 135: 13286
- 8f Zou Y.-Q, Chen J.-R, Liu X.-P, Lu L.-Q, Davis RL, Jørgensen KA, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
- 8g Johnson JA, Luo J, Zhang X, Chen YS, Morton MD, Echeverría E, Torres FE, Zhang J. ACS Catal. 2015; 5: 5283
- 8h Wang ZJ, Li R, Landfester K, Zhang KA. I. Polymer 2017; 126: 291
- 8i Xie HY, Han LS, Hung S, Lei X, Cheng Y, Zhao W, Sun H, Wen X, Xu QL. J. Org. Chem. 2017; 82: 5236
- 8j Sawant SD, Hudwekar AD, Kumar KA. A, Venkateswarlu V, Singh PP, Vishwakarma RA. Tetrahedron Lett. 2014; 55: 811
- 8k Matsui K, Ishigami T, Yamaguchi T, Yamaguchi E, Tada N, Miura T, Itoh A. Synlett 2014; 25: 2613
- 9a Dar BA, Bhatti P, Singh AP, Lazar A, Sharma PR, Sharma M, Singh B. Appl. Catal. A 2013; 466: 60
- 9b Yang D, An B, Wei W, Jiang M, You J, Wang H. Tetrahedron 2014; 70: 3630
- 9c Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
- 9d Affrose A, Azath IA, Dhakshinamoorthy A, Pitchumani K. J. Mol. Catal. A: Chem. 2014; 395: 500
- 9e Xu J, Wang X, Shao C, Su D, Cheng G, Hu Y. Org. Lett. 2010; 12: 1964
- 9f Inamoto K, Nozawa K, Yonemoto M, Kondo Y. Chem. Commun. 2011; 47: 11775
- 9g Zheng J, Lin S, Zhu X, Jiang B, Yang Z, Pan Z. Chem. Commun. 2012; 48: 6235
- 9h Gogoi N, Gogoi PK, Borah G, Bora U. Tetrahedron Lett. 2016; 57: 4050
- 10a Silveria-Dorta G, Monzon DM, Crisostomo FP, Martin T, Martin VS, Carrillo R. Chem. Commun. 2015; 51: 7027
- 10b Kotoucova H, Strnadova I, Kovandova M, Chudoba J, Dvorakova H, Cibulka R. Org. Biomol. Chem. 2014; 12: 2137
- 11 Gupta S, Chaudhary P, Srivastava V, Kandasamy J. Tetrahedron Lett. 2016; 57: 2506
- 12 Mahanta A, Adhikari P, Bora U, Thakur AJ. Tetrahedron Lett. 2015; 56: 1780
- 13 Gohain M, du Plessis M, van Tonder JH, Bezuidenhoudt BC. B. Tetrahedron Lett. 2014; 55: 2081
- 14 Gogoi K, Dewan A, Gogoi A, Borah G, Bora U. Heteroat. Chem. 2014; 25: 127
- 15 Gogoi A, Bora U. Tetrahedron Lett. 2013; 54: 1821
- 16 Saikia E, Bora SJ, Chetia B. RSC Adv. 2015; 5: 102723
- 17 Prakash GK. S, Chacko S, Panja C, Thomas TE, Gurung L, Rasul G, Mathew T, Olah GA. Adv. Synth. Catal. 2009; 351: 1567
- 18 Gogoi A, Bora U. Synlett 2012; 23: 1079
- 19 Mulakayala N. ; Ismail; Kumar KM, Rapolu RK, Kandagatla B, Rao P, Oruganti S, Pal M. Tetrahedron Lett. 2012; 53: 6004
- 20 Begum T, Gogoi A, Gogoi PK, Bora U. Tetrahedron Lett. 2015; 56: 95
- 21 Wagh RB, Nagarkar JN. Tetrahedron Lett. 2017; 58: 3323
- 22a Wasserscheid P, Welton T. In Ionic Liquids in Synthesis . Wiley-VCH; Weinheim: 2002
- 22b Wasserscheid P, Keim W. Angew. Chem. Int. Ed. 2000; 39: 3773
- 23 For a recent review, see: Vekariya RL. J. Mol. Liquids 2017; 227: 44 ; and references cited therein for the applications of ILs
- 24 Saha A, Payra S, Dutta D, Banerjee S. ChemPlusChem 2017; 82: 1129
- 25a Shin E.-J, Kim H.-S, Joo S.-R, Shin US, Kim S.-H. Catal. Lett. 2019; 149: 1560
- 25b Joo S.-R, Kwon G.-T, Park S.-Y, Kim S.-H. Bull. Korean Chem. Soc. 2019; 40: 465
- 25c Shin E.-J, Joo S.-R, Kim S.-H. Tetrahedron Lett. 2019; 55: 1509
- 26 Kim K.-S, Shin B.-K, Lee H. Korean J. Chem. Eng. 2004; 21: 1010
- 27a Molander GA, Cavalcanti LN, Canturk B, Pan P.-S, Kenndy LE. J. Org. Chem. 2009; 74: 7364
- 27b Gillis EP, Burke MD. J. Am. Chem. Soc. 2007; 129: 6716
- 28 Typical Procedure for the ipso-HydroxylationA flask was charged with phenylboronic acid (3.0 mmol), [bmim]Cl (52.0 mg), and H2O2 (aq 30 wt%, 0.24 mL). Then, the mixture was stirred at room temperature in open air for 15 min. The reaction mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with water, then dried with anhydrous Na2SO4, and evaporated under reduced pressure. The crude mixture was purified by column chromatography on silica gel (hexanes/EtOAc).Phenol (2a)96%, colorless oily liquid. 1H NMR (400 MHz, CDCl3): δ = 7.28 (t, J = 8.4 Hz, 2 H), 6.99–6.95 (m, 1 H), 6.89–6.85 (m, 2 H), 4.80 (br s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 155.4, 129.7, 120.9, 115.3 ppm.
Alternative typical protocols for the nucleophilic substitution of activated aryl halides and transition-metal-catalyzed conversion into phenols: