CC BY-ND-NC 4.0 · Synlett 2019; 30(07): 803-808
DOI: 10.1055/s-0037-1612079
letter
Copyright with the author

Efficiency and Selectivity Aspects in the C–H Functionalization of Aliphatic Oxygen Heterocycles by Photocatalytic Hydrogen Atom Transfer

,
PhotoGreen Laboratory, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy   Email: davide.ravelli@unipv.it
› Author Affiliations
We thank the MIUR for financial support (SIR Project ‘Organic Synthesis via Visible Light Photocatalytic Hydrogen Transfer’; Code: ­RBSI145Y9R).
Further Information

Publication History

Received: 05 December 2018

Accepted after revision: 01 January 2019

Publication Date:
05 February 2019 (online)


Published as part of the Special Section 10th EuCheMS Organic Division Young Investigator Workshop

Abstract

The C–H to C–C conversion in aliphatic oxygen heterocycles (dioxolanes, 1,3-dioxane, or cyclic carbonates) by photocatalytic hydrogen atom transfer and subsequent trapping of the resulting radical with phenyl vinyl sulfone was investigated. The performance of three different photocatalysts, namely tetrabutylammonium decatungstate and the aromatic ketones thioxanthone and 9-fluorenone, was compared. The UV-light-absorbing decatungstate anion is more efficient and permits the use of a smaller excess of hydrogen donor than the aromatic ketones, although the ketones could be excited by visible light. Further intramolecular selectivity studies revealed that aromatic ketones afforded a higher proportion of functionalization at the acetalic versus the ethereal positions than did the decatungstate anion.

Supporting Information

 
  • References and Notes

  • 1 Handbook of Heterocyclic Chemistry . Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV. Elsevier; Oxford: 2010. 3rd ed.
  • 2 Delost MD, Smith DT, Anderson BJ, Njardarson JT. J. Med. Chem. 2018; 61: 10996
    • 3a Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
    • 3b Chemler SR, Copeland DA. Top. Heterocycl. Chem. 2013; 32: 39
    • 3c Egi M, Akai S. Heterocycles 2015; 91: 931
    • 3d Novák Z, Kotschy A. Top. Heterocycl. Chem. 2014; 45: 231
  • 4 Kaur N. Synth. Commun. 2014; 44: 3483
  • 5 Visible Light Photocatalysis in Organic Chemistry . Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim, Germany: 2018
  • 6 Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 7a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 7b Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
  • 8 Crespi S, Fagnoni M. Top. Heterocycl. Chem. 2018; 54: 1
  • 9 Special issue: Hydrogen Atom Transfer, Acc. Chem. Res., 2018, 51, 2601.
    • 10a Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2017: 2056
    • 10b Protti S, Fagnoni M, Ravelli D. ChemCatChem 2015; 7: 1516

      For recent selected examples, see:
    • 11a Deng H.-P, Zhou Q, Wu J. Angew. Chem. Int. Ed. 2018; 57: 12661
    • 11b Le C, Liang Y, Evans RW, Li X, MacMillan DW. C. Nature 2017; 547: 79
    • 11c Nielsen MK, Shields BJ, Liu J, Williams MJ, Zacuto MJ, Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 7191
    • 11d Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
    • 11e Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
  • 12 Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232
  • 13 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
  • 14 Kamijo S. Top. Heterocycl. Chem. 2018; 54: 71
  • 15 Hoffmann N. J. Phys. Org. Chem. 2015; 28: 121
  • 16 Fan X.-Z, Rong J.-W, Wu H.-L, Zhou Q, Deng H.-P, Tan JD, Xue C.-W, Wu L.-Z, Tao H.-R, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
    • 17a Manfrotto C, Mella M, Freccero M, Fagnoni M, Albini A. J. Org. Chem. 1999; 64: 5024
    • 17b Geraghty NW. A, Lally A. Chem. Commun. 2006; 4300
    • 17c Dondi D, Protti S, Albini A, Mañas Carpio S, Fagnoni M. Green Chem. 2009; 11: 1653
    • 17d Kamijo S, Kamijo K, Maruoka K, Murafuji T. Org. Lett. 2016; 18: 6516
    • 17e Kawaai K, Yamaguchi T, Yamaguchi E, Endo S, Tada N, Ikari A, Itoh A. J. Org. Chem. 2018; 83: 1988
    • 17f Papadopoulos GN, Voutyritsa E, Kaplaneris N, Kokotos CG. Chem. Eur. J. 2018; 24: 1726
    • 18a Papadopoulos GN, Limnios D, Kokotos CG. Chem. Eur. J. 2014; 20: 13811
    • 18b Papadopoulos GN, Kokotos CG. J. Org. Chem. 2016; 81: 7023
    • 18c Papadopoulos GN, Kokotos CG. Chem. Eur. J. 2016; 22: 6964
    • 19a Xia J.-B, Zhu C, Chen C. J. Am. Chem. Soc. 2013; 135: 17494
    • 19b Xia J.-B, Zhu C, Chen C. Chem. Commun. 2014; 50: 11701
    • 19c Bume DD, Pitts CR, Jokhai RT, Lectka T. Tetrahedron 2016; 72: 6031
  • 20 Tachikawa Y, Cui L, Matsusaki Y, Tada N, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 6218
  • 21 C–H Functionalization of Aliphatic Oxygen Heterocycles; General Procedure A solution of phenyl vinyl sulfone (2; 0.1 M), the chosen aliphatic oxygen heterocycle 1 (0.3–5 M), the photocatalyst (TBADT: 2 mol%; 9-fluorenone or thioxanthone: 20 mol%), and the base (NaHCO3 or Cs2CO3; 1 equiv, if required) in the chosen medium (MeCN or CH2Cl2) was purged with N2 for 5 min then irradiated. The reaction course and the product distribution were monitored by GC analysis. The photolyzed solution was concentrated in vacuo, and the resulting residue was purified by column chromatography (silica gel, cyclohexane–EtOAc) to give product(s) 3 and/or 4. 4-[2-(Phenylsulfonyl)ethyl]-1,3-dioxolan-2-one (3c) Colorless oil; yield: 73 mg (57%). IR (neat): 2942, 1768, 1131 cm−1. 1H NMR (CDCl3, 300 MHz): δ = 7.95–7.90 (m, 2 H), 7.75–7.70 (m, 1 H), 7.65–7.60 (m, 2 H), 4.95–4.90 (m, 1 H), 4.65–4.50 (m, 1 H), 4.15–4.10 (m, 1 H), 3.35–3.20 (m, 2 H), 2.40–2.10 (m, 2 H). 13C NMR (CDCl3, 75 MHz): δ = 154.4, 138.4, 134.2 (CH), 129.5 (CH), 127.9 (CH), 74.5 (CH), 68.8 (CH2), 51.6 (CH2), 27.3 (CH2). Anal. Calcd for C11H12O5S: C, 51.55; H, 4.72. Found: C, 51.6; H, 4.7. 4-Methyl-4-[2-(phenylsulfonyl)ethyl]-1,3-dioxolan-2-one (3g) White solid; yield: 66 mg (49%); mp 117–118 °C. IR (KBr): 2923, 1801, 1281, 1064 cm−1. 1H NMR (CDCl3, 300 MHz): δ = 7.95–7.90 (m, 2 H), 7.75–7.70 (m, 1 H), 7.65–7.60 (m, 2 H), 4.25–4.15 (m, 2 H), 3.25–3.20 (m, 2 H), 2.25–2.20 (m, 2 H), 1.15 (s, 3 H). 13C NMR (CDCl3, 75 MHz): δ = 153.5, 138.4, 134.2 (CH), 129.5 (CH), 127.9 (CH), 81.5, 74.0 (CH), 50.7 (CH2), 31.6 (CH2), 24.2 (CH3). Anal. Calcd for C12H14O5S: C, 53.32; H, 5.22. Found: C, 53.3; H, 5.2.
  • 22 Ravelli D, Montanaro S, Zema M, Fagnoni M, Albini A. Adv. Synth. Catal. 2011; 353: 3295
  • 23 The decatungstate anion is known to be unstable under strongly basic conditions, although it tolerates the presence of NaHCO3 as an insoluble base; see: Ravelli D, Albini A, Fagnoni M. Chem. Eur. J. 2011; 17: 572
  • 24 Similar behavior has recently been observed in the case of HAT from alkanols and alkanediols; see: Salamone M, Ortega VB, Martin T, Bietti M. J. Org. Chem. 2018; 83: 5539
    • 25a Iyer A, Clay A, Jockusch S, Sivaguru J. J. Phys. Org. Chem. 2017; 30: e3738
    • 25b Soep B, Mestdagh J.-M, Briant M, Gaveau M.-A, Poisson L. Phys. Chem. Chem. Phys. 2016; 18: 22914
    • 25c Santhamurthy AR, Rao TA. P, Sobhanadri J, Murthy VR. K. J. Phys. Soc. Jpn. 1998; 67: 1220
    • 26a Rosenthal I, Elad D. J. Org. Chem. 1968; 33: 805
    • 26b Graalfs H, Fröhlich R, Wolff C, Mattay J. Eur. J. Org. Chem. 1999; 1057
  • 27 Dondi D, Fagnoni M, Albini A. Chem. Eur. J. 2006; 12: 4153
  • 28 De Waele V, Poizat O, Fagnoni M, Bagno A, Ravelli D. ACS Catal. 2016; 6: 7174
  • 29 Mosca R, Fagnoni M, Mella M, Albini A. Tetrahedron 2001; 57: 10319
  • 30 Yamada K, Fukuyama T, Fujii S, Ravelli D, Fagnoni M, Ryu I. Chem. Eur. J. 2017; 23: 8615