Subscribe to RSS
DOI: 10.1055/s-0037-1612085
1,2-Dihydrochromeno[2,3-c]pyrrol-3-one Derivatives: Synthesis and HPLC-ECD Analysis
The authors thank the National Research Development and Innovation Office (Grant Nos: K-112951, K-120181, and PD-121020) for financial support and the Governmental Information Technology Development Agency (KIFÜ) for CPU time.Publication History
Received: 20 November 2018
Accepted after revision: 02 January 2019
Publication Date:
05 February 2019 (online)

Published as part of the Special Section 10th EuCheMS Organic Division Young Investigator Workshop
Abstract
Ethyl-3-formyl-6-methoxy-(2H)-chromene-2-carboxylate was transformed to N-substituted 1,2-dihydrochromeno[2,3-c]pyrrol-3-ones in a domino reductive amination–lactamization reaction. Isomerization of the double bond and the inherently labile stereogenic center was studied, and HPLC-ECD analysis of a chiral 1,2-dihydrochromeno[2,3-c]pyrrol-3(3aH)-one derivative aided by TDDFT-ECD calculation allowed configurational assignment of the separated enantiomers. Antiproliferative activity of the products was demonstrated on the CaCo-2 human epithelial colorectal adenocarcinoma cell line.
Key words
1,2-dihydrochromeno[2,3-c]pyrrol-3-one - isomerization - HPLC-ECD - TDDFT-ECD - antiproliferativeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612085.
- Supporting Information
-
References and Notes
- 1 Sarabu R. WO 2011157682, 2011
- 2 Zou F, Yang Y, Ma T, Xi J, Zhou J, Zha X. Med. Chem. Res. 2017; 26: 701
- 3 Mangiatordi GF, Trisciuzzi D, Iacobazzi R, Denora N, Pisani L, Catto M, Leonetti F, Alberga D, Nicolotti O. Chem. Biol. Drug Des. 2018; 92: 1161
- 4 Cherry PC, Pipe AJ, Kitchin J, Borthwick AD, Coles RJ, Burn D. US 4769367, 1988
- 5 Riley AJ. EP 460912, 1991
- 6 Gourdeau H, Leblond L, Hamelin B, Despateau C, Dong K, Kianicka I, Custeau D, Boudreau C, Geerk L, Cai S-Y, Drewe J, Labrecque D, Kasibhata S, Tseng B. Mol. Cancer Ther. 2004; 3: 1375
- 7 Fouqué A, Delalande O, Jean M, Castellano R, Josselin E, Malleter M, Shoji FK, Hung MD, Rampanarivo H, Collette Y, van de Weghe P, Legembre P. J. Med. Chem. 2015; 58: 6559
- 8 Sugita Y, Takao K, Uesawa Y, Sakagami H. Anticancer Res. 2017; 37: 5919
- 9 Bogza YP, Katsiel AL, Sharypova AN, Tolstikova TG, Fisyuk AS. Chem. Heterocycl. Comp. 2015; 50: 1712
- 10 Cheng JF, Ishikawa A, Ono Y, Arrhenius T, Naudzan A. Bioorg. Med. Chem. Lett. 2003; 13: 3647
- 11 Tanaka H, Atsumia I, Shirotab O, Sekitab S, Sakai E, Satod M, Muratae J, Murataf H, Darnaedig D, Chen I.-S. Chem. Biodiversity 2011; 8: 476
- 12 Kashiwada Y, Yamazaki K, Ikeshiro Y, Yamagishi T, Fujioka T, Mihashi K, Mizuki K, Cosentino LM, Fowke K, Morris-Natschke SL, Lee KH. Tetrahedron 2001; 57: 1559
- 13 Kang Y, Mei Y, Du Y, Jin Z. Org. Lett. 2003; 5: 4481
- 14 Iwata N, Kitanaka S. J. Nat. Prod. 2010; 73: 1203
- 15 Sundén H, Ibrahem I, Zhao GL, Eriksson L, Cordóva A. Chem. Eur. J. 2007; 13: 574
- 16 General Procedure for the Synthesis of rac-17a,b,e,f,j and rac-19c,d,g–jTo a stirred solution of 13 (0.100 g, 0.38 mmol) in ethanol (10 mL), primary amine 14a–j (1.3 equiv, 0.49 mmol) was added, and the reaction mixture was heated to reflux for 3 h. After cooling to room temperature, the ethanol was removed under reduced pressure. The residue was dissolved in methanol, NaBH4 (2 equiv, 0.029 g, 0.76 mmol) was added, the reaction mixture was stirred for 10 min and then concentrated under reduced pressure. Water (10 mL) and dichloromethane (10 mL) were added, and the organic layer was separated. The aqueous phase was extracted with dichloromethane (2 × 10 mL), the combined organic layers were washed with saturated aq. NaHCO3, dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.
- 17 (±)-2-Pentyl -7-methoxy-1,2-dihydrochromeno[2,3-c]pyrrol-3(3aH)-one (17e)The residue was purified by column chromatography on silica gel (hexane/ethyl acetate, 2:1) to give the product as a white solid (65 mg, 56%); mp 174–175 °C. 1H NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 14.4 and 7.2 Hz, 5′-H, 3 H), 1.32 (m, 3′-H and 4′-H, 4 H), 1.59 (m, 2′-H, 2 H), 3.41 (m, 1′-H, 2 H), 3.76 (s, OMe, 3 H), 4.12 (m, 1-H, 2 H), 5.12 (s, 3a-H, 1 H), 6.40 (s, 9-H, 1 H), 6.62 (d, J = 2.8 Hz, 8-H, 1 H), 6.71 (m, 6-H, 1 H), 6.99 (d, J = 8.8 Hz, 5-H, 1 H). 13C-NMR (100 MHz, CDCl3): δ = 13.9 (C-5′), 22.4 (C-4′), 26.7 (C-3′), 28.9 (C-2′), 42.7 (C-1′), 47.9 (C-1), 55.7 (OMe), 74.3 (C-3a), 112.2 (C-8), 114.3 (C-5), 117.4 (C-6), 119.1 (C-9), 123.6 (C-9a), 127.8 (C-8a), 154.7 (C-7), 168.4 (C-3). IR (KBr): ν = 1032, 1243, 1490, 1693, 2954 cm–1. GC–MS: 287.1.
- 18 (±)-2-Hexyl-7-methoxy-1,2-dihydrochromeno[2,3-c]pyrrol-3(3aH)-one (17f)The residue was purified by column chromatography on silica gel (hexane/ethyl acetate, 3:1) to give the product as a white solid (42 mg, 36%); mp 157–159 °C. 1H NMR (400 MHz, CDCl3): δ = 0.87 (m, 6′-H, 3 H), 1.31 (m, 3′-H, 4′-H, 5′-H, 6 H), 1.56 (m, 2′-H, 2 H), 3.40 (m, 1′-H, 2 H), 4.12 (s, OMe, 3 H), 4.13 (m, 1-H, 2 H), 5.12 (s, 3a-H, 1 H), 6.40 (s, 9-H, 1 H), 6.62 (d, J = 2.8 Hz, 8-H, 1 H), 6.71 (m, 6-H, 1 H), 6.99 (d, J = 8.8 Hz, 5-H, 1 H). 13C-NMR (100 MHz, CDCl3): δ = 13.9 (C-6′), 22.4 (C-5′), 26.3 (C-3′), 26.9 (C-2′), 31.3 (C-4′), 42.6 (C-1′), 47.7 (C-1), 55.6 (OMe), 74.1 (C-3a), 112.1 (C-8), 114.2 (C-5), 117.2 (C-6), 118.9 (C-9), 123.4 (C-9a), 127.7 (C-8a), 146.4 (C-4a), 154.6 (C-7), 168.2 (C-3). IR (KBr): ν = 1032, 1243, 1489, 1693, 2954 cm–1. GC–MS: 301.1.
- 19 Gao H, Liu W, Zhu T, Mo X, Mándi A, Kurtán T, Li J, Ai J, Gua Q, Li D. Org. Biomol. Chem. 2012; 10: 9501
- 20 Tóth L, Fu Y, Zhang HY, Mándi A, Kövér EK, Illyés T.-Z, Kiss-Szikszai A, Balogh B, Kurtán T, Antus S, Mátyus P. Beilstein J. Org. Chem. 2014; 10: 2594
- 21 Tóth L, Mándi A, Váradi D, Kovács T, Szabados A, Kiss-Szikszai A, Gong Q, Zhang H, Mátyus P, Antus A, Kurtán T. Chirality 2018; 30: 866
- 22 Sun P, Xu DX, Mándi A, Kurtán T, Li TJ, Schulz B, Zhang W. J. Org. Chem. 2013; 78: 7030
- 23 Ilkei V, Spaits A, Prechl A, Szigetvári Á, Béni Z, Dékány M, Szántay CJr, Müller J, Könczöl Á, Szappanos Á, Mándi A, Antus S, Martins A, Hunyadi A, Balogh GT, Kalaus G, Bölcskei H, Hazai L, Kurtán T. Beilstein J. Org. Chem. 2016; 12: 2523
- 24 Li H.-L, Li X.-M, Mándi A, Antus S, Li X, Zhang P, Liu Y, Kurtán T, Wang B.-G. J. Org. Chem. 2017; 82: 9946
- 25 Grimme S. J. Comput. Chem. 2006; 27: 1787
- 26 Yanai T, Tew DP, Handy NC. Chem. Phys. Lett. 2004; 393: 51