Thromb Haemost 2003; 90(06): 1220-1222
DOI: 10.1055/s-0037-1613429
Letters to the Editor
Schattauer GmbH

Variation of factorVII 140s and 170s loops in fishes: evolutionary aspects and comparison with mutations found in FVII deficiency

Christian Furlan Freguia
,
Raffaella Toso
,
Paolo Ferraresi
,
Mirko Pinotti
,
Francesco Bernardi
Financial support: This research was supported by Telethon Italy (grant GP02182).
Weitere Informationen

Publikationsverlauf

Received 26. Mai 2003

Accepted after resubmission 22. September 2003

Publikationsdatum:
09. Dezember 2017 (online)

 

 
  • References

  • 1 Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991; 30: 10363-70.
  • 2 Pike ACW, Brzozowsk AM, Roberts SM. et al. Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc Natl Acad Sci USA 1999; 96: 8925-30.
  • 3 Kemall-Cook G, Johnson DJL, Tuddenham EGD. et al. Crystal structure of active site-inhibited human coagulation Factor VII (des-Gla). J Struct Biol 1999; 127: 213-23.
  • 4 Bodi A, Kaslik G, Venekei I. et al. Structural determinants of the half-life and cleavage site preference in the autolytic inactivation of chymotrypsin. Eur J Biochem 2001; 268: 6238-46.
  • 5 Jin J, Perera L, Stafford D. et al. Four loops of the catalytic domain of factor VIIa mediate the effect of the first EGF-like domain substitution on factor VIIa catalytic activity. J Mol Biol 2001; 307: 1068-79.
  • 6 Greer J. Comparative modelling methods: application to the family of the mammalian serine protease. Proteins 1990; 7: 317-34.
  • 7 Sheehan J, Templer M, Gregory M. et al. Demonstration of the extrinsic coagulation pathway in teleostei: identification of zebrafish coagulation factor VII. Proc Natl Acad Sci USA 2001; 98: 8768-73.
  • 8 Davidson CL, Hirt RP, Lal K. et al. Molecular evolution of the vertebrate blood coagulation network. Thromb Haemost 2003; 89: 420-8.
  • 9 Hanumanthaiah R, Day K, Jagadeeswaran P. Comprehensive analysis of blood coagulation pathways in teleostei: evolution of coagulation factor genes and identification of zebrafish factor Vlli. Blood Cells Mol Dis 2002; 29: 57-68.
  • 10 Nelson JR. Fishes of the world, 3rdedition. John Wiley & Sons, Inc.; New York: 1994
  • 11 Thompson JD, Higgins DG, Gibson TJ, Clustal W. Improving sequence alignment through sequence weighting; position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673-80.
  • 12 Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics. Seattle: University of Washington; 1993
  • 13 Felsenstein J. PHYLIP, Phylogeny Inference Package (Version 3.2). Cladistics 1989; 5: 164-6.
  • 14 Ruf W. Factor VIIa residue Arg290 is required for efficient activation of the macromolecular substrate factor X. Biochemistry 1994; 33: 11631-36.
  • 15 Toso R, Pinotti M, High KA. et al. A frequent human coagulation factor VII mutation (A294V, cl52) in loop 140s affects the interaction with activators, tissue factor and substrate. Biochem J 2002; 363: 411-6.
  • 16 Soejima K, Mizuguchi J, Yuguchi M. et al. Factor VIIa modified in the 170 loops shows enhanced catalytic activity but does not change the zymogen-like property. J Biol Chem 2001; 276: 17229-35.
  • 17 McVey JH, Boswell E, Mumford AD. et al. Factor VII deficiency and the FVII mutation database. Hum Mutat 2001; 17: 3-17.