Nuklearmedizin 2016; 55(03): 77-89
DOI: 10.1055/s-0037-1616478
Verfahrensanweisung
Schattauer GmbH

Radioiodtherapie beim differenzierten Schilddrüsenkarzinom

Verfahrensanweisung – Version 4 (Stand 30.10.2015)Procedure guidelines for radioiodine therapy of differentiated thyroid cancer Version 4Procedural instruction – Version 4 (as of 30.10.2015)
Markus Dietlein
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN) und die
3   Klinik und Poliklinik für Nuklearmedizin des Universitätsklinikums Köln
,
Wolfgang Eschner
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN) und die
2   Deutsche Gesellschaft für Medizinische Physik (DGMP)
3   Klinik und Poliklinik für Nuklearmedizin des Universitätsklinikums Köln
,
Frank Grünwald
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN) und die
4   Klinik für Nuklearmedizin des Universitätsklinikums Frankfurt am Main
,
Michael Lassmann
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN) und die
2   Deutsche Gesellschaft für Medizinische Physik (DGMP)
5   Klinik und Poliklinik für Nuklearmedizin des Universitätsklinikums Würzburg
,
Frederik A. Verburg
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN) und die
6   Klinik und Poliklinik für Nuklearmedizin des RWTH Universitätsklinikums Aachen
,
Markus Luster
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN) und die
7   Klinik für Nuklearmedizin des Universitäts klinikums Gießen/Marburg, Standort Marburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 03. Februar 2016

accepted: 03. Februar 2016

Publikationsdatum:
10. Januar 2018 (online)

Zusammenfassung

Die Verfahrensanweisung zur Radioiodtherapie beim differenzierten Schilddrüsenkarzinom (Version 4) wurde von einer repräsentativen Expertengruppe im informellen Konsens verabschiedet und entspricht damit einer Leitlinie der ersten Stufe (S1) nach den Kriterien der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Die Verfahrensanweisung ergänzt die S2-Leitlinie zur operativen Behandlung maligner Schilddrüsenerkrankungen um die nuklearmedizinischen Aspekte. Bezüglich der Indikationsstellung zur ablativen Radioiodtherapie beim kleinen papillären Schilddrüsenkarzinom und beim minimal invasiven follikulären Schilddrüsenkarzinom ohne Angioinvasion, bezüglich der empirischen Bemessung der 131I-Therapieaktivität sowie bezüglich der exogenen versus endogenen TSH-Stimulation bei der ablativen Radio-iodtherapie werden Handlungskorridore beschrieben. Der Text enthält die Auswertungen aus der National Cancer Database und der SEER-Database (jeweils USA), wonach die ablative Radioiodtherapie bereits in einer Niedrig-Risiko Konstellation die Überlebensrate verbessert. Der statistische Nachweis eines solchen Nutzens setzt ein nationales Krebsregister mit Langzeitdaten voraus.

Summary

The procedure guideline for radioiodine therapy of differentiated thyroid cancer (version 4) was developed in the consensus of a representative expert group. This fulfils the level S1 (first step) within the AWMF classification of Clinical Practice Guidelines (AWMF, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften, Germany). This procedure guideline completed the guideline for surgical management of thyroid cancer (level S2) with the aspects from nuclear medicine. Controversies over ablative radioiodine therapy in small papillary thyroid cancers and in minimally invasive follicular cancer without angioinvasion, over empirical standard doses for ablative radioiodine therapy, and over the kind of TSH-stimulation were described and the guideline formulated a corridor of good clinical practice. The text has included the recent results from the National Cancer database and the SEER database (both from the USA), indicating that the ablative radioiodine therapy has improved the survival rate even in low risk patients. Such a statistically significant benefit can be detected only by a national cancer registry with long-term follow-up data.

 
  • Literatur

  • 1 Adam MA, Pura J, Gu L. et al. Extent of surgery for papillary thyroid cancer is not associated with survival. Ann Surg 2014; 260: 601-607.
  • 2 Avram AM, Fig LM, Frey KA. et al. Preablation 131I scans with SPECT/CT in postoperative thyroid cancer patients. J Clin Endocrinol Metab 2013; 98: 1163-1171.
  • 3 AWMF Leitlinie 088-002: Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie. Operative Therapie maligner Schilddrüsenerkrankungen. Version vom 9. November 2012 AWMF online www.awmf.de/leitlinien 21.10.2013
  • 4 Barbaro D, Boni G, Meucci G. et al. Radioiodine treatment with 30 mCi after recombinant human thyrotropin stimulation in thyroid cancer. J Clin Endocrinol Metab 2003; 88: 4110-4115.
  • 5 Barbaro D, Grosso Boni G. et al. Recombinant human TSH and ablation of post-surgical thyroid remnants in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010; 37: 242-249.
  • 6 Biko J, Reiners C, Kreissl MC. et al. Favourable course of disease after incomplete remission on 131I therapy in children with pulmonary metastases of papillary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2011; 38: 651-655
  • 7 Blumhardt R, Wolin EA, Philips WT. et al. Current controversies in the initial post-surgical radioactive iodine therapy for thyroid cancer. Endocr Relat Cancer 2014; 21: R474-R484.
  • 8 Brown AP, Chen J, Hitchcock YJ. et al. The risk of second primary malignancies up to three decades after treatment of differentiated thyroid cancer. J Clin Endocrinol Metab 2008; 93: 504-515.
  • 9 Buffet C, Golmard JL, Hoang C. et al. Scoring system for predicting recurrence in patients with papillary thyroid microcarcinoma. Eur J Endocrinol 2012; 167: 267-275.
  • 10 Caglar M, Bozkurt FM, Akca CK. et al. Comparison of 800 and 3700 MBq iodine-131 for the postoperative ablation of thyroid remnant in patients with low-risk differentiated thyroid cancer. Nucl Med Commun 2012; 33: 268-274.
  • 11 Chen MK, Yasrebi M, Samii J. et al. The utility of I-123 pretherapy scan in I-131 radioiodine therapy for thyroid cancer. Thyroid 2012; 22: 304-309.
  • 12 Cooper DS, Doherty GM, Haugen BR. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19: 1167-1214.
  • 13 Creach KM, Siegel BA, Nussenbaum B, Grigsby PW. Radioactive iodine therapy decreases recurrence in thyroid papillary microcarcinoma. ISRN Endocrinology 2012; 2013: 816386.
  • 14 Dietlein M, Luster M, Reiners C. Differenziertes Schilddrüsenkarzinom: Behandlunskorridore und interdisziplinäre Konzepte. Update 2013/2014. Thieme-Refresher Onkologie 2013; 5: R1-R32
  • 15 Dietlein M, Eschner W, Lassmann M. et al. DGN-Handlungsempfehlung (S1-Leitlinie): Radioiodtest (Version 4). Stand 10/2014 - AWMF-Registernummer: 031-012
  • 16 Doi SA, Woodhouse NJ. Ablation of the thyroid remnant and 131I dose in differentiated thyroid cancer. Clin Med Research 2007; 5: 87-90.
  • 17 Düren C, Dietlein M, Luster M. et al. The use of thyrogen in the treatment of differentiated thyroid carcinoma. Exp Clin Endocrinol Diabetes 2010; 118: 513-519.
  • 18 Elisei R, Schlumberger M, Driedger A. et al. Follow-up of low-risk differentiated thyroid cancer patients who underwent radioiodine ablation of postsurgical thyroid remnants after either recombinant human thyrotropin or thyroid hormone withdrawal. J Clin Endocrinol Metab 2009; 94: 4171-4179.
  • 19 Elisei R, Viola D, Toregrossa L. et al. The BRAF V600E mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary carcinoma. J Clin Endocrinol Metab 2012; 97: 4390-4398.
  • 20 European Medicines Agency (EMA). Committee for medicinal products for human use. Post-authorisation summary of positive opinion for Thyrogen. EMEA/CHMP/745393/2009 www.emea.europa.eu/docs/en_GB/document_library/Summary_of_opinion/human/00220/WC500059147.pdf 21.10.2013
  • 21 Fallahi B, Beiki D, Takavar A. et al. Low versus high radioiodine dose in postoperative ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma. Nucl Med Commun 2012; 33: 275-282.
  • 22 Fernández CA, Puig-Domingo M, Lomena F. et al. Effectiveness of retinoid acid treatment for redifferentiation of thyroid cancer in relation to recovery of radioiodine uptake. J Endocrinol Invest 2009; 32: 228-233.
  • 23 Frigo A, Dardano A, Danese E. et al. Chromosome translocation frequency after radioiodine thyroid remnant ablation. J Clin Endocrinol Metab 2009; 94: 3472-3476.
  • 24 Gallicchio R, Giacomobono S, Capacchione D. et al. Should patients with remnants from thyroid microcarcinoma really not be treated with I-131 ablation?. Endocrine 2013; 44: 426-433.
  • 25 Goffredo P, Cheung K, Roman SA, Sosa JA. Can minimally invasive follicular thyroid cancer be approached as a benign lesion?. Ann Surg Oncol 2013; 20: 767-772.
  • 26 Hänscheid H, Lassmann M, Luster M. et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer. J Nucl Med 2006; 47: 648-654.
  • 27 Hänscheid H, Canzi C, Eschner W. et al. EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging 2013; 40: 1126-1134.
  • 28 Handkiewicz-Junak D, Roskosz J, Hasse-Lazar K. et al. 13-cis-retinoid acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-functional metastatic thyroid cancer. Thyroid Research 2009; 2: 8-18.
  • 29 Hebestreit H, Biko J, Drozd V. et al. Pulmonary fibrosis in youth treated with radioiodine for juvenile thyroid cancer and lung metastases after Chernobyl. Eur J Nucl Med Mol Imaging 2011; 38: 1683-1690.
  • 30 Ho AL, Grewal RK, Leboeuf R. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013; 368: 623-632.
  • 31 Hugo J, Robenshtok E. Grewal et al. Recombinant human thyroid stimulating hormone-assisted radioactive iodine remnant ablation in thyroid cancer patients at intermediate to high risk of recurrence. Thyroid 2012; 22: 1007-1015.
  • 32 Jarzab B, Handkiewicz-Junak D, Roskosz J. et al. Recombinant human TSH-aided radioiodine treatment of advanced differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2003; 30: 1077-1086.
  • 33 Jentzen W, Hoppenbrouwers J, van Leeuwen P. et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med 2014; 55: 1759-1765.
  • 34 Kim WG, Kim EJ, Kim TY. et al. Redifferentiation therapy with 13-cis retinoid acids in radioiodine resistant thyroid cancer. Endocr J 2009; 56: 105-112.
  • 35 Klubo-Gwiezdzinska J, van Nostrand D, Atkins F. et al. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 2011; 96: 3217-3225.
  • 36 Kukulska A, Krajewska J, Gawkowska-Suwinska M. et al. Radioiodine thyroid remnant ablation in patients with differentiated thyroid carcinoma (DTC). Thyroid Res 2010; 3: 9.
  • 37 Lassmann M, Hänscheid H, Chiesa C. et al. EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry. I. Blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 2008; 35: 1405-1412.
  • 38 Leboulleux S, Schroeder PR, Busaidy NL. et al. Assessment of the incremental value of recombinant thyrotropin stimulation before 2-(18F)-fluoro-2-deoxy-D-glucose PET/CT imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab 2009; 94: 1310-1316.
  • 39 Lee KJ, Cho YJ, Kim SJ. et al. Analysis of the clinicopathologic features of papillary thyroid microcarcinoma based on 7-mm tumor size. World J Surg 2011; 35: 318-323.
  • 40 Luster M, Lippi F, Jarzab B. et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma. Endocr Relat Cancer 2005; 12: 49-64.
  • 41 Luster M, Clarke SE, Dietlein M. et al. Guidelines for radioiodine treatment of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35: 1941-1959.
  • 42 Machens A, Holzhausen H-J, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005; 103: 2269-2273.
  • 43 Malandrino P, Pellegriti G, Attard M. et al. Papillary thyroid microcarcinomas. J Clin Endocrinol Metab 2013; 98: 1427-1434.
  • 44 Mallick U, Harmer C, Yap B. et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med 2012; 366: 1674-1685.
  • 45 Maxon HR, Thomas SR, Hertzberg VS. et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 1983; 309: 937-941.
  • 46 Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994; 97: 418-428.
  • 47 Medvedec M. Thyroid stunning in vivo and in vitro. Nucl Med Commun 2005; 26: 731-735.
  • 48 Mehanna H, Al-Maqbili T, Carter B. et al. Differences in the recurrence and mortality outcomes rates of incidental and nonincidental papillary thyroid microcarcinoma. J Clin Endocrinol Metab 2014; 99: 2834-2843.
  • 49 Meller B, von Hof K, Genina E. et al. Diagnostic 123I and 131I activities and radioiodine therapy. Nuklearmedizin 2005; 44: 243-248.
  • 50 Nakada K, Ishibashi T, Takei T. et al. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer?. J Nucl Med 2005; 46: 261-266.
  • 51 O’Neill CJ, Vaughan L, Learoyd DL. et al. Management of follicular thyroid carcinoma should be individualised based on degree of capsular and vascular invasion. Eur J Surg Oncol 2011; 37: 181-185.
  • 52 Orosco RK, Hussain T, Brumund KT. et al. Analysis of age and disease status as predictors of thyroid cancer-specific mortality using the surveillance, epidemiology, and end results database. Thyroid 2015; 25: 125-132.
  • 53 Pacini F, Ladenson PW, Schlumberger M. et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma. J Clin Endocrinol Metab 2006; 91: 926-932.
  • 54 Pacini F, Schlumberger M, Dralle H. et al. European Thyroid Cancer Taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006; 154: 787-803.
  • 55 Pacini F, Castagna MG, Brilli L, Pentheroudakis G. ESMO Guidelines Working Group. Differentiated thyroid cancer. Ann Oncol 2009; 20 (Suppl. 04) 143-146.
  • 56 Park EK, Chung JK, Lim IH. et al. Recurrent/metastatic thyroid carcinomas false negative for serum thyroglobulin but positive by posttherapy I-131 whole body scans. Eur J Nucl Med Mol Imaging 2009; 36: 172-179.
  • 57 Perros P, Colley S, Boelart K. et al. British Thyroid Association guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf) 2014; 81 (Suppl. 01) 1-122.
  • 58 Petrich T, Börner AR, Otto D. et al. Influence of rhTSH on (18F) fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2002; 29: 641-647.
  • 59 Pitoia F, Ilera V, Zanchetta MB. et al. Optimum recombinant human thyrotropin dose in patients with differentiated thyroid carcinoma and end-stage renal disease. Endocrine Pract 2008; 14: 961-966.
  • 60 Reiners C. Radioiodine therapy in patients with pulmonary metastases of thyroid cancer: when to treat, when not to treat?. Eur J Nucl Med Mol Imaging 2003; 30: 939-942.
  • 61 Richtlinie Strahlenschutz in der Medizin. Richtlinie zur Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung - StrlSchV). Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit; RS II 4 - 11432/1 2011
  • 62 Robbins RJ, Chon JT, Fleisher M. et al. Is the serum thyroglobulin response to recombinant human thyrotropin sufficient, by itself, to monitor for residual thyroid carcinoma?. J Clin Endocrinol Metab 2002; 87: 3242-3247.
  • 63 Robenshtok E, Grewal RK, Fish S. et al. A low risk postoperative nonstimulated serum thyroglobulin level does not exclude the presence of radioactive iodine avid metastatic foci in intermediate-risk differentiated thyroid cancer patients. Thyroid 2013; 23: 436-442.
  • 64 Rosário PW, Ribeiro Borges MA, Purisch S. Preparation with recombinant human thyroid-stimulating hormone for thyroid remnant ablation with 131I is associated with lowered radiotoxicity. J Nucl Med 2008; 49: 1776-1782.
  • 65 Rubino C, de Vathaire F, Dottorini ME. et al. Second primary malignancy in thyroid cancer patients. Br J Cancer 2003; 89: 1638-1644.
  • 66 Samaan NA, Schulz PN, Hickey RC. et al. The results of various modalities of treatment of well differentiated thyroid carcinomas. J Clin Endocrinol Metabol 1992; 75: 714-720.
  • 67 Sawka AM, Thephamongkhol K, Brouwers M. et al. Clinical review 170: A systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab 2004; 89: 3668-3676.
  • 68 Sawka AM, Brierley JD, Tsang RW. et al. An updated systematic review and commentary examining the effectiveness of radioactive iodine remnant ablation in well-differentiated thyroid cancer. Endocrinol Metab Clin N Am 2008; 37: 457-480.
  • 69 Schlumberger M, de Vathaire F, Ceccarelli C. et al. Exposure of radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J Nucl Med 1996; 37: 606-612.
  • 70 Schlumberger M, Catargi B, Borget I. et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med 2012; 366: 1663-1673.
  • 71 Serhal DI, Nasrallah MP, Arafah BM. Rapid rise in serum thyrotropin concentrations after thyroidectomy or withdrawal of suppressive thyroxine therapy in preparation for radioactive iodine administration to patients with differentiated thyroid cancer. J Clin Endocrinol Metab 2004; 89: 3285-3289.
  • 72 Strahlenschutzverordnung. Textausgabe mit einer erläuternden Einführung von H.-M. Veith. 8. Aufl. Köln: Bundesanzeiger-Verlag; 2010
  • 73 Tuttle RM, Leboeuf R, Robbins RJ. et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med 2006; 47: 1587-1591.
  • 74 Verburg FA, Mäder U, Luster M, Reiners C. Primary tumour diameter as a risk factor for advanced disease features of differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 2009; 71: 291-297.
  • 75 Verburg FA, Mader U, Tanase K. et al. Life expectancy is reduced in differentiated thyroid cancer patients >/= 45 years old with extensive local tumor invasion, lateral lymph node, or distant metastases at diagnosis and normal in all other DTC patients. J Clin Endocrinol Metab 2013; 98: 172-180.
  • 76 Verburg FA, Mäder U, Reiners C, Hänscheid H. Long-term survival in differentiated thyroid cancer is worse after low-activity initial post-surgical 131I therapy in both highand low-risk patients. J Clin Endocrinol Metab 2014; 99: 4487-4496
  • 77 Vrachimis A, Riemann B, Gerss J. et al. Peace of mind for patients with differentiated thyroid cancer?. Nuklearmedizin 2013; 52: 115-120.
  • 78 Wichers M, Benz E, Palmedo H. et al. Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med 2000; 27: 503-507.
  • 79 Yu X-M, Schneider DF, Leverson G. et al. Follicular variant of papillary thyroid carcinoma is a unique clinical entity. Thyroid 2013; 23: 1263-1268.