Subscribe to RSS
DOI: 10.1055/s-0037-1619851
Spurenelemente und Knochengesundheit
Trace elements and bone healthPublication History
Publication Date:
28 December 2017 (online)
Zusammenfassung
Spurenelemente sind dem Namen entsprechend nur in sehr niedrigen Konzentrationen im Organismus und in der täglichen Nahrung vorhanden. Einige von ihnen sind essentielle Bestandteile von Enzymen und Transkriptionsfaktoren und erfüllen lebenswichtige Funktionen. Für die Knochengesundheit sind neben anderen besonders Jod, Selen und Zink von großer Bedeutung. Sie wirken über Schilddrüsenhormone, antioxidative Enzyme und Transkriptionsfaktoren auf Prozesse in der Entwicklung und Regeneration. Hyperund Hypothyreose sind, wie auch oxidativer Stress, Risikofaktoren für die Osteoporose. Oxidative Schädigung von Zellen ist ein wichtiger Faktor der Gewebealterung, was für die Osteoporose des älteren Menschen bedeutend sein kann. Zink ist im Kontext mit dem perimenopausalen Östrogenverlust erniedrigt und kann im Tierversuch teilweise den mit Östrogenmangel assoziierten Knochenverlust kompensieren. Jod, Selen und Zink sind somit für den Knochenstoffwechsel wichtig, man kennt Mangelerscheinungen und sie können durch Ernährungsverhalten und Supplemente korrigiert werden. Auch für Bor deutet sich an, dass es in Bezug auf Ernährung und Knochenstoffwechsel eine Bedeutung erlangen könnte. Viele Spurenelemente haben aber im Zusammenhang mit Ernährung nach derzeitiger Kenntnis keine so herausragende Bedeutung. Kobalt, Mangan, Chrom und Vanadium sind wichtig bei der Biokompatibilität von Implantaten, einige andere wie Fluor, Lithium und Strontium werden als Arzneimittel bei der Behandlung der Osteoporose und der Depression eingesetzt. Die Erforschung besonders der Spurenelemente Selen und Zink bezüglich ihrer Einflüsse auf die Knochengesundheit sollte sicher mehr Aufmerksamkeit erfahren.
Summary
Trace elements, as the name implies, are found in very low concentrations in the organism and in our food. Some of them are functionally essential for enzymes and transcription factors and thus are vitally important. Besides some other essential trace elements bone health is especially modulated directly or indirectly by iodine, selenium and zinc. These trace elements elicit their influence on bone development and regeneration via thyroid hormones, antioxidative enzymes and transcription factors. Both hypo and hyperthyroidism as well as oxidative stress are risk factors for osteoporosis. Oxidative damage of cells is also an important propagator of ageing, a relevant clinical risk factor in osteoporosis of the elderly. Serum zinc levels are low in the context of postmenopausal loss of estrogens, and zinc replacement is partly effective for compensation of the associated bone loss in animal studies. Thus iodine, selenium and zinc are important for bone metabolism, we do know clinical deficiency syndromes and they can be modulated through nutritional habits and supplements. Boron may also be an upcoming trace element in terms of nutrition and bone metabolism. Many trace elements however, at least according to present knowledge, are of only minor importance with respect to nutrition. Cobalt, manganese, chromium and vanadium are relevant for the biocompatibility of implants, others like fluorine, lithium and strontium are used for therapy of osteoporosis and depression. Further research in the putative role of selenium and zinc for bone metabolism may be of special relevance for the future.
-
Literatur
- 1 Biesalski HK, Fürst P, Kasper H. et al. Ernährungsmedizin. Stuttgart. New York: Georg Thieme 1995.;
- 2 Biesalski HK, Köhrle J, Schümann K. Vitamine, Spurenelemente und Mineralstoffe. Prävention und Therapie mit Mikronährstoffen. Stuttgart. New York: Georg Thieme; 2002
- 3 Acca M, Ragno A, Francucci CM, D’Erasmo E. Metabolic bone diseases during long-term total parenteral nutrition. J Endocrinol Invest 2007; 30 (Suppl. 06) 54-59.
- 4 Klein GL. Aluminum: new recognition of an old problem. Curr Opin Pharmacol 2005; 05 (06) 637-640.
- 5 Reinke CM, Breitkreutz J, Leuenberger H. Aluminium in over-the-counter drugs: risks outweigh benefits?. Drug Saf 2003; 26 (14) 1011-1025.
- 6 Malluche HH. Aluminium and bone disease in chronic renal failure. Nephrol Dial Transplant 2002; 17 (Suppl. 02) 21-24.
- 7 Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Arch Oral Biol 2008; 53 (07) 677-682.
- 8 Naghii MR, Torkaman G, Mofid M. Effects of boron and calcium supplementation on mechanical properties of bone in rats. Biofactors 2006; 28 (3–4) 195-201.
- 9 Kobla HV, Volpe SL. Chromium, exercise, and body composition. Crit Rev Food Sci Nutr 2000; 40 (04) 291-308.
- 10 Hummel M, Standl E, Schnell O. Chromium in metabolic and cardiovascular disease. Horm Metab Res 2007; 39 (10) 743-751.
- 11 Thomas P, Summer B, Sander CA. et al. Intolerance of osteosynthesis material: evidence of dichromate contact allergy with concomitant oligoclonal T-cell infiltrate and TH1-type cytokine expression in the peri-implantar tissue. Allergy 2000; 55 (10) 969-972.
- 12 Sankaramanivel S, Jeyapriya R, Hemalatha D. et al. Effect of chromium on vertebrae, femur and calvaria of adult male rats. Hum Exp Toxicol 2006; 25 (06) 311-318.
- 13 De Flora S, Iltcheva M, Balansky RM. Oral chromium(VI) does not affect the frequency of micronuclei in hematopoietic cells of adult mice and of transplacentally exposed fetuses. Mutat Res 2006; 07 610 (1–2) 38-47.
- 14 Bailey MM, Boohaker JG, Sawyer RD. et al. Exposure of pregnant mice to chromium picolinate results in skeletal defects in their offspring. Birth Defects Res B Dev Reprod Toxicol 2006; 77 (03) 244-249.
- 15 Fleury C, Petit A, Mwale F. et al. Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: morphology, cytotoxicity, and oxidative stress. Biomaterials 2006; 27 (18) 3351-3360.
- 16 Vincent JB. Recent developments in the biochemistry of chromium(III). Biol Trace Elem Res 2004; 99 (1–3) 1-16.
- 17 Simon M, Le Mignon L, Edan G. et al. So-called “other types” of diabetes: chronic pancreatitis and hemochromatosis. Journ Annu Diabetol Hotel Dieu 1984; 85-114.
- 18 Angelopoulos NG, Goula AK, Papanikolaou G, Tolis G. Osteoporosis in HFE2 juvenile hemochromatosis.A case report and review of the literature. Osteoporos Int 2006; 17 (01) 150-155.
- 19 Duquenne M, Rohmer V, Legrand E. et al. Spontaneous multiple vertebral fractures revealed primary haemochromatosis. Osteoporos Int 1996; 06 (04) 338-340.
- 20 Seppa L. Fluoride varnishes in caries prevention. Med Princ Pract 2004; 13 (06) 307-311.
- 21 Casals E, Boukpessi T, McQueen CM. et al. Anticaries potential of commercial dentifrices as determined by fluoridation and remineralization efficiency. J Contemp Dent Pract 2007; 08 (07) 1-10.
- 22 Jakob F. Metabolic bone diseases. Internist (Berl) 2007; 48 (10) 1101-1117.
- 23 Pfeilschifter J. 2006 DVO-guideline for prevention, diagnosis, and therapy of osteoporosis for women after menopause, for men after age 60 executive summary guidelines. Exp Clin Endocrinol Diabetes 2006; 114 (10) 611-622.
- 24 Vestergaard P, Jorgensen NR, Schwarz P, Mosekilde L. Effects of treatment with fluoride on bone mineral density and fracture risk – a meta-analysis. Osteoporos Int 2008; 19 (03) 257-268.
- 25 Cundy T. Recovery from skeletal fluorosis. J Bone Miner Res. 2007 22. (9): 1475; author reply 6.
- 26 Tamer MN, Kale BKoroglu, Arslan C. et al. Osteosclerosis due to endemic fluorosis. Sci Total Environ 2007; 373 (01) 43-48.
- 27 Kohrle J, Jakob F, Contempre B, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev 2005; 26 (07) 944-984.
- 28 Bassett JH, Nordstrom K, Boyde A. et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007; 21 (08) 1893-1904.
- 29 Ahmed LA, Schirmer H, Berntsen GK. et al. Selfreported diseases and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 2006; 17 (01) 46-53.
- 30 Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid 2002; 12 (05) 411-419.
- 31 Vestergaard P, Rejnmark L, Mosekilde L. Influence of hyper and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int 2005; 77 (03) 139-144.
- 32 Abe E, Sun L, Mechanick J. et al. Bone loss in thyroid disease: role of lowTSH and high thyroid hormone. Ann NY Acad Sci 2007; 1116: 383-391.
- 33 Kim DH, Burgess AP, Li M. et al. Heme oxygenase-mediated increases in adiponectin decrease fat content and inflammatory cytokines, TNF and IL-6, in Zucker rats and reduce adipogenesis in human mesenchymal stem cells. J Pharmacol Exp Ther 2008; Mar: 11.
- 34 Thomas P, Schuh A, Ring J, Thomsen M. Orthopedic surgical implants and allergies: Joint statement by the Implant Allergy Working Group (AK 20) of the DGOOC (German Association of Orthopedics and Orthopedic Surgery), DKG (German Contact Dermatitis Research Group) and DGAKI (German Society for Allergology and Clinical Immunology). Orthopade 2008; 37 (01) 75-88.
- 35 Endres S, Bartsch I, Sturz S. et al. Polyethylene and cobalt-chromium molybdenium particles elicit a different immune response in vitro. J Mater Sci Mater Med 2008; 19 (03) 1209-1214.
- 36 Papageorgiou I, Yin Z, Ladon D. et al. Genotoxic effects of particles of surgical cobalt chrome alloy on human cells of different age in vitro. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2007; 619 (1–2) 45-58.
- 37 Steens W, Loehr J, von Foerster G, Katzer A. Chronische Kobaltvergiftung in der Endoprothetik. Der Orthopäde 2006; 35 (08) 860-864.
- 38 Gur A, Colpan L, Cevik R. et al. Comparison of zinc excretion and biochemical markers of bone remodelling in the assessment of the effects of alendronate and calcitonin on bone in postmenopausal osteoporosis. Clin Biochem 2005; 38 (01) 66-72.
- 39 Gur A, Colpan L, Nas K. et al. The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab 2002; 20 (01) 39-43.
- 40 Mutlu M, Argun M, Kilic E. et al. Magnesium, zinc and copper status in osteoporotic, osteopenic and normal post-menopausal women. J Int Med Res 2007; 35 (05) 692-695.
- 41 Palacios C. The role of nutrients in bone health, from A to Z. Crit Rev Food Sci Nutr 2006; 46 (08) 621-628.
- 42 Rahnama M. Influence of estrogen deficiency on the copper level in rat teeth and mandible. Ann Univ Mariae Curie Sklodowska (Med) 2002; 57 (01) 352-356.
- 43 Rico H, Roca-Botran C, Hernandez ER. et al. The effect of supplemental copper on osteopenia induced by ovariectomy in rats. Menopause 2000; 07 (06) 413-416.
- 44 Selimoglu MA, Ertekin V, Doneray H, Yildirim M. Bone mineral density of children with Wilson disease: efficacy of penicillamine and zinc therapy. J Clin Gastroenterol 2008; 42 (02) 194-198.
- 45 Chen Y, Whetstone HC, Lin AC. et al. Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 2007; 04 (07) e249.
- 46 Shi YC, Worton L, Esteban L. et al. Effects of continuous activation of vitamin D and Wnt response pathways on osteoblastic proliferation and differentiation. Bone 2007; 41 (01) 87-96.
- 47 Wilting I, de Vries F, Thio BM. et al. Lithium use and the risk of fractures. Bone 2007; 40 (05) 1252-1258.
- 48 Culotta VC, Yang M, O’Halloran TV. Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 2006; 1763 (07) 747-758.
- 49 Bae YJ, Kim MH. Manganese Supplementation Improves Mineral Density of the Spine and Femur and Serum Osteocalcin in Rats. Biol Trace Elem Res 2008; Mar: 11.
- 50 Ebert R, Ulmer M, Zeck S. et al. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 2006; 24 (05) 1226-1235.
- 51 Molders M, Felix J, Bingmann D. et al. Uptake of nickel from 316L stainless steel into contacting osteoblastic cells and metal ion interference with BMP-2-induced alkaline phosphatase. J Biomed Mater Res A 2007; 83 (02) 303-312.
- 52 Oller AR, Erexson G. Lack of micronuclei formation in bone marrow of rats after repeated oral exposure to nickel sulfate hexahydrate. Mutat Res 2007; 626 (1–2) 102-110.
- 53 Sargeant TD, Rao MS, Koh CY, Stupp SI. Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers. Biomaterials 2008; 29 (08) 1085-1098.
- 54 Soumetz FC, Pastorino L, Ruggiero C. Human osteoblast-like cells response to nanofunctionalized surfaces for tissue engineering. J Biomed Mater Res B Appl Biomater 2008; 84 (01) 249-255.
- 55 Jakob F, Becker K, Paar E. et al. Expression and regulation of thioredoxin reductases and other selenoproteins in bone. Methods Enzymol 2002; 347: 168-179.
- 56 Lean JM, Jagger CJ, Kirstein B. et al. Hydrogen Peroxide Is Essential for Estrogen-Deficiency Bone Loss and Osteoclast Formation. Endocrinology 2005; 146 (02) 728-735.
- 57 Moreno-Reyes R, Egrise D, Boelaert M. et al. Iodine deficiency mitigates growth retardation and osteopenia in selenium-deficient rats. J Nutr 2006; 136 (03) 595-600.
- 58 Moreno-Reyes R, Mathieu F, Boelaert M. et al. Selenium and iodine supplementation of rural Tibetan children affected by Kashin-Beck osteoarthropathy. Am J Clin Nutr 2003; 78 (01) 137-144.
- 59 Kohrle J. Selenium and the control of thyroid hormone metabolism. Thyroid 2005; 15 (08) 841-853.
- 60 Tapiero H, Townsend DM, Tew KD. The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 2003; 57 (3–4) 134-144.
- 61 Bogani P, Visioli F. Antioxidants in the Mediterranean diets: An update. World Rev Nutr Diet 2007; 97: 162-179.
- 62 Cerecetto H, Lopez GV. Antioxidants derived from vitamin E: an overview. Mini Rev Med Chem 2007; 07 (03) 315-338.
- 63 Gromer S, Urig S, Becker K. The thioredoxin system – from science to clinic. Med Res Rev 2004; 24 (01) 40-89.
- 64 Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 2007; Mar: 13.
- 65 Valko M, Leibfritz D, Moncol J. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39 (01) 44-84.
- 66 Tiago DM, Laize V, Cancela ML, Aureliano M. Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell line. Cell Biol Toxicol 2007; Sep: 25.
- 67 Villani P, Cordelli E, Leopardi P. et al. Evaluation of genotoxicity of oral exposure to tetravalent vanadium in vivo. Toxicol Lett 2007; 170 (01) 11-18.
- 68 Zhang SQ, Chen GH, Lu WL, Zhang Q. Effects on the bones of vanadyl acetylacetonate by oral administration: a comparison study in diabetic rats. J Bone Miner Metab 2007; 25 (05) 293-301.
- 69 Hsieh JC, Whitfield GK, Jurutka PW. et al. Two basic amino acids C-terminal of the proximal box specify functional binding of the vitamin D receptor to its rat osteocalcin deoxyribonucleic acid-responsive element. Endocrinology 2003; 144 (11) 5065-5080.
- 70 Negi S, Imanishi M, Matsumoto M, Sugiura Y. New Redesigned Zinc-Finger Proteins: Design Strategy and Its Application. Chemistry 2008; 14 (11) 3236-3249.
- 71 Blessing H, Kraus S, Heindl P. et al. Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur J Biochem 2004; 271 (15) 3190-3199.
- 72 Webster KA, Prentice H, Bishopric NH. Oxidation of zinc finger transcription factors: physiological consequences. Antioxid Redox Signal 2001; 03 (04) 535-548.
- 73 Atik OS, Uslu MM, Eksioglu F, Satana T. Etiology of senile osteoporosis: a hypothesis. Clin Orthop Relat Res 2006; 443: 25-27.
- 74 Elmstahl S, Gullberg B, Janzon L. et al. Increased incidence of fractures in middle-aged and elderly men with low intakes of phosphorus and zinc. Osteoporos Int 1998; 08 (04) 333-340.
- 75 Yamada Y, Ito A, Kojima H. et al. Inhibitory effect of Zn2+ in zinc-containing beta-tricalcium phosphate on resorbing activity of mature osteoclasts. J Biomed Mater Res A 2008; 84 (02) 344-352.
- 76 Cerovic A, Miletic I, Sobajic S. et al. Effects of zinc on the mineralization of bone nodules from human osteoblast-like cells. Biol Trace Elem Res 2007; 116 (01) 61-71.