Osteologie 2010; 19(03): 232-239
DOI: 10.1055/s-0037-1619947
Mechanobiologie des Knochens
Schattauer GmbH

Mechanotransduktion im Alter und bei Osteoporose

Mechanotransduction in aging and osteoporosis
L. Seefried
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
R. Ebert
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
S. Müller-Deubert
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
B. Klotz
2   Institut für Experimentelle Unfallchirurgie, Universität Ulm
,
M. Kober
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
A. Liedert
2   Institut für Experimentelle Unfallchirurgie, Universität Ulm
,
A. Ignatius
2   Institut für Experimentelle Unfallchirurgie, Universität Ulm
,
F. Jakob
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 03. August 2010

angenommen: 03. August 2010

Publikationsdatum:
30. Dezember 2017 (online)

Zusammenfassung

Knochen wird permanent an die alltäglichen mechanischen Kräfte adaptiert, um für die natürlichen Gegebenheiten eine optimale Frakturresistenz zu gewährleisten. Osteoporose ist eine Erkrankung, bei der unter Alltagsbedingungen Fragilitätsfrakturen entstehen. Ursache dafür sind strukturelle und qualitative Defizite und eine Verminderung der Knochenmasse. Es handelt sich somit um eine Dysadaptation des Organs, verursacht entweder durch ungenügenden Krafteintrag oder durch eine Störung der Mechanosensitivität der Osteoblasten und Osteozyten. Kraft durch Dehnung, Kompression oder Flüssigkeits-Scher-Stress wird über Adhäsionsmoleküle, Rezeptoren, Kanäle und über das Zytoskelett auf die Zelle übertragen. Die Umwandlung in biologische Signale geschieht durch Signaltransduktionskaskaden bis hin zur Genregulation im Zellkern. Neben den membranständigen molekularen Strukturen werden auch subzelluläre Organell-Strukturen wie z.B. das primäre Zilium als Übermittler mechanischer Signale diskutiert. Bei Osteoporose sind häufig Signalwege gestört, die mit der Mechanotransduktion zusammenhängen, was man an den Hauptrisikofaktoren der Osteoporose ablesen kann. Östrogene wirken als Mechanosensitizer, so dass nach der Menopause die Gefahr der Dysadaptation steigt. Zelluläre Alterung ist mit Störungen der Mechanotransduktion verknüpft, wie am Beispiel von Laminopathien gezeigt werden konnte, präklinischen und klinischen Modellerkrankungen für vorzeitiges Altern. Die als Haupt-Risikogene für den genetischen Hintergrund der Osteoporose identifizierten Kandidaten sind fast sämtlich molekular in die Regulation der Mechanotransduktion eingebunden. Es gibt präklinische und klinische Evidenz dafür, dass z.B. die anabole Therapie mit Parathormon/Teriparatid nur unter Einwirkung mechanischer Kräfte wirklich wirksam ist. Ein überwältigender Hinweis für das Vorliegen fundamentaler Störungen der Regulation der Mechanosensitivität bei der Osteoporose ist die Tatsache, dass meistens der Gewinn von Knochenmasse durch die verfügbaren therapeutischen Prinzipien nicht wirklich nachhaltig ist. Antiresorptive und anabole Prinzipien der Therapie der Knochenmasse sind bereits auf dem Markt, weitere sind in der Entwicklung. Ein Medikament, das die Mechanosensitivität des Knochens beeinflusst, wäre das ideale Werkzeug, um per se anabol zu wirken und/oder den Therapieerfolg mit anderen Medikamenten zu erhalten. Die Forschung hierüber ist daher von hoher klinischer Relevanz.

Summary

Bone is permanently adapted to mechanical forces resulting from individual habits and lifestyle, to generate an adequate fracture resistance for this natural environment. Osteoporosis is characterized by fragility fractures under nontraumatic circumstances, due to deficits in bone mass, structure and quality. Osteoporosis can be interpreted as a syndrome of dysadaptation, either caused by disuse and immobilization and/ or by alterations in the mechanosensitivity of osteoblasts and osteocytes. Mechanical forces, applied by stretching, compression or fluid shear stress, are transferred to cells via molecular structures such as adhesion molecules, receptors, channels and the cytoskeleton. Signal transduction cascades and the consecutive nuclear gene regulation translate forces into biological signals. In addition, subcellular organelle structures like the primary cilium are being discussed as putatively important mediators of mechanotransduction in bone cells, although their association with bone pathophysiology remains to be shown. Alterations to signal transduction in osteoporosis do involve mechanisms of mechanotransduction, as can be deduced from the main risk factors for osteoporosis. Estrogens are mechanosensitizers, and the risk of dysadaptation increases during menopause. Cellular ageing is associated with alterations in mechanotransduction, as has been demonstrated, e. g. in so called laminopathies, monogenetic preclinical and clinical model diseases for premature ageing. Many strong candidate genes, which have recently been described as the genetic background for osteoporosis, are also involved in the regulation of mechanotransduction. Moreover, there is evidence that the anabolic treatment effect of parathyroid hormone/teriparatide is abolished by unloading. Strong indirect evidence for the impact of mechanosensitivity comes from the fact that almost no treatment effect with any current anti-osteoporotic drug is sustained permanently, indicating that there is a problem with the threshold of mechanosensitivity. A series of antiresorptive and anabolic treatment modalities is already on the market, more of them are being developed. Having for example a small molecule mechanosensitizer would be an ideal instrument to either gain bone mass using this principle and/or maintain the success of different treatment modalities. Hence research on this issue is of enormous clinical relevance.

 
  • Literatur

  • 1 Mosley JR. Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J Rehabil Res Dev 2000; 37 (02) 189-199.
  • 2 Rittweger J. What is new in neuro-musculoskeletal interactions: mechanotransduction, microdamage and repair?. J Musculoskelet Neuronal Interact 2007; 07 (02) 191-193.
  • 3 Sambrook P, Cooper C. Osteoporosis. Lancet 2006; 367 (9527): 2010-2018.
  • 4 Alexander C. Idiopathic osteoporosis: an evolutionary dys-adaptation?. Ann Rheum Dis 2001; 60 (06) 554-558.
  • 5 Califano JP, Reinhart-King CA. Exogenous and endogenous force regulation of endothelial cell behavior. J Biomech 2010; 43 (01) 79-86.
  • 6 Sharif-Naeini R, Folgering JH, Bichet D. et al. Sensing pressure in the cardiovascular system: Gqcoupled mechanoreceptors and TRP channels. J Mol Cell Cardiol 2010; 48 (01) 83-89.
  • 7 Liu L, Yuan W, Wang J. Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol. 2010 Mar 23. [Epub ahead of print].
  • 8 Chen JH, Liu C, You L, Simmons CA. Boning up on Wolff ‘s Law: mechanical regulation of the cells that make and maintain bone. J Biomech 2010; 43 (01) 108-118.
  • 9 Rittweger J. Can exercise prevent osteoporosis?. J Musculoskelet Neuronal Interact 2006; 06 (02) 162-166.
  • 10 Tatsumi S, Ishii K, Amizuka N. et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 2007; 05 (06) 464-475.
  • 11 Cowin SC. Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact 2002; 02 (03) 256-260.
  • 12 Ikeda K. Osteocytes in the pathogenesis of osteoporosis. Geriatr Gerontol Int 2008; 08 (04) 213-217.
  • 13 Kearney EM, Farrell E, Prendergast PJ, Campbell VA. Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng 2010; 38 (05) 1767-1779.
  • 14 Feng T, Szabo E, Dziak E, Opas M. Cytoskeletal disassembly and cell rounding promotes adipogenesis from ES cells. Stem Cell Rev 2010; 06 (01) 74-85.
  • 15 Potier E, Noailly J, Ito K. Directing bone marrowderived stromal cell function with mechanics. J Biomech 2010; 43 (05) 807-817.
  • 16 Ozcivici E, Luu YK, Adler B. et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 2010; 06 (01) 50-59.
  • 17 Huang AH, Farrell MJ, Mauck RL. Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech 2010; 43 (01) 128-136.
  • 18 Liedert A, Wagner L, Seefried L. et al. Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 2010; 394 (03) 755-759.
  • 19 Liedert A, Kaspar D, Blakytny R. et al. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 2006; 349 (01) 1-5.
  • 20 Guilak F, Leddy HA, Liedtke W. Transient receptor potential vanilloid 4: The sixth sense of the musculoskeletal system?. Ann N Y Acad Sci 2010; 1192 (01) 404-409.
  • 21 Hong ZQ, Tao LM, Li L. Effect of stress on mRNA expression of H+-ATPase in osteoclasts. Mol Cell Biochem. 2010 Jun 12. [Epub ahead of print].
  • 22 Bakker AD, Klein-Nulend J, Tanck E. et al. Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos Int 2006; 17 (06) 827-833.
  • 23 Jiang SD, Jiang LS, Dai LY. Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos Int 2007; 18 (03) 339-349.
  • 24 Maimoun L, Couret I, Mariano-Goulart D. et al. Changes in osteoprotegerin/RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury. Calcif Tissue Int 2005; 76 (06) 404-411.
  • 25 Gaudio A, Pennisi P, Bratengeier C. et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 2010; 95 (05) 2248-2253.
  • 26 Lin C, Jiang X, Dai Z. et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 2009; 24 (10) 1651-1661.
  • 27 Tseng Y, Kole TP, Lee JS. et al. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem Biophys Res Commun 2005; 334 (01) 183-192.
  • 28 Pavalko FM, Norvell SM, Burr DB. et al. A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem 2003; 88 (01) 104-112.
  • 29 Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci 2010; 123 (Pt 4): 499-503.
  • 30 Deltas C, Papagregoriou G. Cystic diseases of the kidney: molecular biology and genetics. Arch Pathol Lab Med 2010; 134 (04) 569-582.
  • 31 Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction. Ann N Y Acad Sci 2010; 1192 (01) 422-428.
  • 32 Whitfield JF. The solitary (primary) cilium - a mechanosensory toggle switch in bone and cartilage cells. Cell Signal 2008; 20 (06) 1019-1024.
  • 33 Malone AM, Anderson CT, Tummala P. et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 2007; 104 (33) 13325-13330.
  • 34 Xiao ZS, Quarles LD. Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann N Y Acad Sci 2010; 1192 (01) 410-421.
  • 35 Song X, Di Giovanni V, He N. et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 2009; 18 (13) 2328-2343.
  • 36 Lee J, Moon S, Cha Y, Chung YD. Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 2010; 05 (06) e11012.
  • 37 Phan MN, Leddy HA, Votta BJ. et al. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 2009; 60 (10) 3028-3037.
  • 38 Lee BH, Ashrafi K. A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan. PLoS Genet 2008; 04 (10) e1000213.
  • 39 Stanford CM, Welsch F, Kastner N. et al. Primary human bone cultures from older patients do not respond at continuum levels of in vivo strain magnitudes. J Biomech 2000; 33 (01) 63-71.
  • 40 Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. Curr Biol 2009; 19 (13) R526-R35.
  • 41 Sharma N, Berbari NF, Yoder BK. Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 2008; 85: 371-427.
  • 42 Saxon LK, Lanyon LE. Assessment of the in vivo adaptive response to mechanical loading. Methods Mol Biol 2008; 455: 307-322.
  • 43 Kuruvilla SJ, Fox SD, Cullen DM, Akhter MP. Site specific bone adaptation response to mechanical loading. J Musculoskelet Neuronal Interact 2008; 08 (01) 71-78.
  • 44 Aguirre JI, Plotkin LI, Gortazar AR. et al. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 2007; 282 (35) 25501-25508.
  • 45 Lanyon L, Armstrong V, Ong D. et al. Is estrogen receptor alpha key to controlling bones’ resistance to fracture?. J Endocrinol 2004; 182 (02) 183-191.
  • 46 Zaman G, Jessop HL, Muzylak M. et al. Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res 2006; 21 (08) 1297-1306.
  • 47 Jessop HL, Suswillo RF, Rawlinson SC. et al. Osteoblast-like cells from estrogen receptor alpha knockout mice have deficient responses to mechanical strain. J Bone Miner Res 2004; 19 (06) 938-946.
  • 48 Lee KC, Jessop H, Suswillo R. et al. The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-alpha and -beta. J Endocrinol 2004; 182 (02) 193-201.
  • 49 Judex S, Garman R, Squire M. et al. Genetically linked site-specificity of disuse osteoporosis. J Bone Miner Res 2004; 19 (04) 607-613.
  • 50 Aguirre JI, Plotkin LI, Stewart SA. et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 2006; 21 (04) 605-615.
  • 51 Rittweger J, Felsenberg D. Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a oneyear follow-up. Bone 2009; 44 (02) 214-224.
  • 52 Eser P, Frotzler A, Zehnder Y. et al. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 2004; 34 (05) 869-880.
  • 53 Richards JB, Kavvoura FK, Rivadeneira F. et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 2009; 151 (08) 528-537.
  • 54 Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men--the MINOS study. J Bone Miner Res 2005; 20 (05) 721-729.
  • 55 Kohrt WM, Barry DW, Schwartz RS. Muscle forces or gravity: what predominates mechanical loading on bone?. Med Sci Sports Exerc 2009; 41 (11) 2050-2055.
  • 56 Karasik D, Kiel DP. Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 2010; 46 (05) 1226-1237.
  • 57 Meczekalski B, Podfigurna-Stopa A, Genazzani AR. Hypoestrogenism in young women and its influence on bone mass density. Gynecol Endocrinol 2010; 26 (09) 652-657.
  • 58 Schiessl H, Frost HM, Jee WS. Estrogen and bonemuscle strength and mass relationships. Bone 1998; 22 (01) 1-6.
  • 59 Kemmler W, Engelke K, von Stengel S. et al. Longterm four-year exercise has a positive effect on menopausal risk factors: the Erlangen Fitness Osteoporosis Prevention Study. J Strength Cond Res 2007; 21 (01) 232-239.
  • 60 Engelke K, Kemmler W, Lauber D. et al. Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Osteoporos Int 2006; 17 (01) 133-142.
  • 61 Jakob F, Benisch P, Klotz B. et al. Sexualsteroide in der Homöostase des Knochens (Sex steroids in bone homeostasis). Osteologie 2010; 19 (02) 105-110.
  • 62 Bagur A, Oliveri B, Mautalen C. et al. Low levels of endogenous estradiol protect bone mineral density in young postmenopausal women. Climacteric 2004; 07 (02) 181-188.
  • 63 Vandenput L, Ohlsson C. Sex steroid metabolism in the regulation of bone health in men. J Steroid Biochem Mol Biol 2010; 121 (3-5): 582-588 Epub 2010 Mar 31.
  • 64 Lapauw B, Taes Y, Goemaere S. et al. Anthropometric and skeletal phenotype in men with idiopathic osteoporosis and their sons is consistent with deficient estrogen action during maturation. J Clin Endocrinol Metab 2009; 94 (11) 4300-4308.
  • 65 LeBlanc ES, Nielson CM, Marshall LM. et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab 2009; 94 (09) 3337-3346.
  • 66 Amin S, Zhang Y, Felson DT. et al. Estradiol, testosterone, and the risk for hip fractures in elderly men from the FraminghamStudy. Am J Med 2006; 119 (05) 426-433.
  • 67 Prestwood KM, Kenny AM, Kleppinger A, Kulldorff M. Ultralow-dose micronized 17beta-estradiol and bone density and bone metabolism in older women: a randomized controlled trial. JAMA 2003; 290 (08) 1042-1048.
  • 68 Huang AJ, Ettinger B, Vittinghoff E. et al. Endogenous estrogen levels and the effects of ultra-low-dose transdermal estradiol therapy on bone turnover and BMD in postmenopausal women. J Bone Miner Res 2007; 22 (11) 1791-1797.
  • 69 Canalis E. Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab 2010; 95 (04) 1496-1504.
  • 70 Trivedi R, Mithal A, Chattopadhyay N. Anabolics in osteoporosis: the emerging therapeutic tool. Curr Mol Med 2010; 10 (01) 14-28.
  • 71 Zhang YL, Frangos JA, Chachisvilis M. Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 2009; 296 (06) C1391-C1399.
  • 72 Sekiya H, Mikuni-Takagaki Y, Kondoh T, Seto K. Synergistic effect of PTH on the mechanical responses of human alveolar osteocytes. Biochem Biophys Res Commun 1999; 264 (03) 719-723.
  • 73 Mikuni-Takagaki Y. Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 1999; 17 (01) 57-60.
  • 74 Bakker AD, Joldersma M, Klein-Nulend J, Burger EH. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am J Physiol Endocrinol Metab 2003; 285 (03) E608-E613.
  • 75 Childress P, Robling AG, Bidwell JP. Nmp4/CIZ: road block at the intersection of PTH and load. Bone 2010; 46 (02) 259-266.
  • 76 Charoonpatrapong-Panyayong K, Shah R, Yang J. et al. Nmp4/CIZ contributes to fluid shear stress induced MMP-13 gene induction in osteoblasts. J Cell Biochem 2007; 102 (05) 1202-1213.
  • 77 Roberts MD, Santner TJ, Hart RT. Local bone formation due to combined mechanical loading and intermittent hPTH-(1-34) treatment and its correlation to mechanical signal distributions. J Biomech 2009; 42 (15) 2431-2438.
  • 78 Kostenuik PJ, Harris J, Halloran BP. et al. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I. J Bone Miner Res 1999; 14 (01) 21-31.
  • 79 Knopp E, Troiano N, Bouxsein M. et al. The effect of aging on the skeletal response to intermittent treatment with parathyroid hormone. Endocrinology 2005; 146 (04) 1983-1990.
  • 80 Borggrefe J, Graeff C, Nickelsen TN. et al. Quantitative computed tomographic assessment of the effects of 24 months of teriparatide treatment on 3D femoral neck bone distribution, geometry, and bone strength: results from the EUROFORS study. J Bone Miner Res 2010; 25 (03) 472-481.
  • 81 Graeff C, Chevalier Y, Charlebois M. et al. Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. J Bone Miner Res 2009; 24 (10) 1672-1680.
  • 82 Hsu YH, Xu X, Terwedow HA. et al. Large-scale genome-wide linkage analysis for loci linked to BMD at different skeletal sites in extreme selected sibships. J Bone Miner Res 2007; 22 (02) 184-194.
  • 83 Ishijima M, Tsuji K, Rittling SR. et al. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice. J Bone Miner Res 2002; 17 (04) 661-667.
  • 84 Litzenberger JB, Kim JB, Tummala P, Jacobs CR. Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int 2010; 86 (04) 325-332.
  • 85 Navarro CL, Cau P, Levy N. Molecular bases of progeroid syndromes. aHum Mol Genet 2006; 15 (Spec No 2): R151-R161.
  • 86 Nakura J, Ye L, Morishima A. et al. Helicases and aging. Cell Mol Life Sci 2000; 57 (05) 716-730.
  • 87 Cunningham VJ, D’Apice MR, Licata N. et al. Skeletal phenotype of mandibuloacral dysplasia associated with mutations in ZMPSTE24. Bone 2010; 47 (03) 591-597 Epub 2010 Jun 13.
  • 88 Rivas D, Li W, Akter R. et al. Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice. J Gerontol A Biol Sci Med Sci 2009; 64 (10) 1015-1024.
  • 89 Lammerding J, Schulze PC, Takahashi T. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 2004; 113 (03) 370-378.
  • 90 Dahl KN, Kalinowski A, Pekkan K. Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics. Microcirculation 2010; 17 (03) 179-191.
  • 91 Philip JT, Dahl KN. Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J Biomech 2008; 41 (15) 3164-3170.
  • 92 Rauner M, Sipos W, Goettsch C. et al. Inhibition of lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis. J Bone Miner Res 2009; 24 (01) 78-86.
  • 93 Akter R, Rivas D, Geneau G. et al. Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res 2009; 24 (02) 283-293.
  • 94 Varela I, Pereira S, Ugalde AP. et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 2008; 14 (07) 767-772.
  • 95 Kasper G, Mao L, Geissler S. et al. Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 2009; 27 (06) 1288-1297.
  • 96 Strube P, Sentuerk U, Riha T. et al. Influence of age and mechanical stability on bone defect healing: age reverses mechanical effects. Bone 2008; 42 (04) 758-764.