Osteologie 2011; 20(01): 23-28
DOI: 10.1055/s-0037-1619975
Frakturheilung
Schattauer GmbH

Zelluläre Defekte und Regulationsstörungen bei der Heilung osteoporotischer Frakturen

Fracture healing in osteoporosis – cellular defects and alterations of regulation
F. Jakob
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
P. Benisch
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
R. Ebert
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
L. Seefried
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
M. Schieker
2   Fakultät für Medizin, Ludwig-Maximilians-Universität München
,
A. Ignatius
3   Institut für Experimentelle Unfallchirurgie, Universität Ulm
› Author Affiliations
Further Information

Publication History

eingereicht: 15 January 2011

angenommen: 15 February 2011

Publication Date:
30 December 2017 (online)

Zusammenfassung

Osteoporose besteht in einer gestörten Adaptation des Knochens an mechanische Anforderungen des Alltags und resultiert im Auftreten von Fragilitätsfrakturen vorwiegend der Wirbelkörper, des Femur, des Radius und des Humerus. Über lange Zeit wurde diskutiert, ob die Frakturheilung bei Osteoporose überhaupt gestört ist, vor allem wegen der Schwierigkeit, geeignete Messparameter für den Ablauf der Frakturheilung zu finden. In den vergangenen Jahren ist auf der Basis präklinischer und klinischer Daten ein Konsensus dahingehend wahrzunehmen, dass bei Osteoporose die Frakturheilung verzögert abläuft und dass nach operativer Versorgung das Implantatversagen gehäuft auftritt. Molekulare Ursachen für diese gestörte Frakturheilung sind bislang nicht in extenso untersucht. Arbeitshypothesen leiten sich aus den modifizierbaren und nicht modifizierbaren Risikofaktoren für die Osteoporose ab und betreffen somit hauptsächlich den Mangel an Sexualhormonen, das Alter, die Immobilisation und die gestörte Mechanotransduktion, sowie den genetischen Hintergrund der Osteoporose. Erste präliminäre Daten aus mesenchymalen Stammzellen im höheren Alter und bei Osteoporose weisen darauf hin, dass die gestörte Regeneration und Knochenheilung eine Folge der verminderten Anzahl an kolonieformenden Stammzellen ist, deren Funktion im Sinne der Migration und Rekrutierung gestört ist, deren Mechanosensitivität vermindert ist und die frühzeitig autoinhibitorische Proteine exprimieren und in die Seneszenz eintreten. Viele Hinweise konzentrieren sich auf den wnt/frz- Signalweg und dessen Hemmproteine wie “secreted frizzled related proteins” SFRP und Sclerostin. Die Erforschung der Frakturheilung in monogenetischen Osteoporosemodellen und in menschlichen Zellen mit Regenerationspotential wird sicher spezifische Defekte aufdecken, die es erlauben, gezielte Interventionsstudien zur Verbesserung der Frakturheilung bei Osteoporose präklinisch und klinisch durchzuführen.

Summary

Osteoporosis is a syndrome of altered bone adaptation to mechanical strain in every-daylife resulting in fragility fractures of mainly vertebrae, the femur, radius and humerus. For many years the scientific community discussed if at all fracture healing is altered in osteoporosis and this was mainly due to the fact that it was difficult to find suitable readouts to evaluate the time course and quality of fracture healing in pathology. In recent years consensus has been achieved in that fracture healing in osteoporosis is delayed and implant failure after surgical stabilization is comparably common. The molecular causes for this alteration have so far not been unraveled in detail. Working hypotheses have been concluded from modifiable and non-modifiable clinical risk factors, e. g. sex hormone deficiency, advanced age, immobilization and altered mechanotransduction and from the genetic background of osteoporosis. Preliminary data obtained from mesenchymal stem cells in aged organisms and in osteoporosis suggest that altered bone regeneration and fracture healing in osteoporosis is a consequence of the diminished number of colony forming stem cells, the function of which is impaired in terms of migration and recruitment, mechanosensitivity, and which are prone to premature expression of autoinhibitory proteins and to replicative senescence. Several sets of data are focusing on the wnt/ frz signaling pathway and its inhibitors like “secreted frizzled related proteins” (SFRP) and sclerostin (SOST). Research in fracture healing in monogenetic mouse models of osteoporosis and in human cells involved in bone regeneration and fracture healing will unravel specific defects and alterations of regulation, which will allow targeted intervention to enhance osteoporotic fracture healing in preclinical models and clinical studies.

 
  • Literatur

  • 1 Gruber R, Koch H, Doll BA. et al. Fracture healing in the elderly patient. Exp Gerontol 2006; 41 (11) 1080-1093.
  • 2 Kloss FR, Gassner R. Bone and aging: effects on the maxillofacial skeleton. Exp Gerontol 2006; 41 (02) 123-129.
  • 3 Stromsoe K. Fracture fixation problems in osteoporosis. Injury 2004; 35 (02) 107-113.
  • 4 Nikolaou VS, Efstathopoulos N, Kontakis G. et al. The influence of osteoporosis in femoral fracture healing time. Injury 2009; 40 (06) 663-668.
  • 5 Giannoudis P, Tzioupis C, Almalki T, Buckley R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury 2007; 38 (Suppl. 01) S90-S99.
  • 6 Seefried L, Ebert R, Müller-Deubert S. et al. Mechanotransduktion im Alter und bei Osteoporose. Osteologie 2010; 19 (03) 232-239.
  • 7 Komatsu DE, Warden SJ. The control of fracture healing and its therapeutic targeting: improving upon nature. J Cell Biochem 2010; 109 (02) 302-311.
  • 8 Schiessl H, Frost HM, Jee WS. Estrogen and bonemuscle strength and mass relationships. Bone 1998; 22 (01) 1-6.
  • 9 Jakob F, Benisch P, Klotz B. et al. Sexualsteroide in der Homöostase des Knochens (Sex steroids in bone homeostasis). Osteologie 2010; 19 (02) 105-110.
  • 10 Imai Y, Kondoh S, Kouzmenko A, Kato S. Minireview: osteoprotective action of estrogens is mediated by osteoclastic estrogen receptor-alpha. Mol Endocrinol 2010; 24 (05) 877-885.
  • 11 Khosla S. Update on estrogens and the skeleton. J Clin Endocrinol Metab 2010; 95 (08) 3569-3577.
  • 12 Rochira V, Carani C. Aromatase deficiency in men: a clinical perspective. Nat Rev Endocrinol 2009; 05 (10) 559-568.
  • 13 Ralston SH. Genetics of osteoporosis. Ann N Y Acad Sci 2010; 1192: 181-189.
  • 14 Richards JB, Kavvoura FK, Rivadeneira F. et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 2009; 151 (08) 528-537.
  • 15 Lim SK, Won YJ, Lee HC. et al. A PCR analysis of ERalpha and ERbeta mRNA abundance in rats and the effect of ovariectomy. J Bone Miner Res 1999; 14 (07) 1189-1196.
  • 16 Stuermer EK, Sehmisch S, Rack T. et al. Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbecks Arch Surg 2010; 395 (02) 163-172.
  • 17 Melhus G, Brorson SH, Baekkevold ES. et al. Gene expression and distribution of key bone turnover markers in the callus of estrogen-deficient, vitamin D-depleted rats. Calcif Tissue Int 2010; 87 (01) 77-89.
  • 18 Kolios L, Hoerster AK, Sehmisch S. et al. Do estrogen and alendronate improve metaphyseal fracture healing when applied as osteoporosis prophylaxis?. Calcif Tissue Int 2010; 86 (01) 23-32.
  • 19 Beil FT, Barvencik F, Gebauer M. et al. Effects of estrogen on fracture healing in mice. J Trauma 2010; 69 (05) 1259-1265.
  • 20 Hatano H, Siegel HJ, Yamagiwa H. et al. Identification of estrogen-regulated genes during fracture healing, using DNA microarray. J Bone Miner Metab 2004; 22 (03) 224-235.
  • 21 Cao Y, Mori S, Mashiba T. et al. Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res 2002; 17 (12) 2237-2246.
  • 22 Namkung-Matthai H, Appleyard R, Jansen J. et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 2001; 28 (01) 80-86.
  • 23 Hao YJ, Zhang G, Wang YS. et al. Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 2007; 41 (04) 631-638.
  • 24 Huang AJ, Ettinger B, Vittinghoff E. et al. Endogenous estrogen levels and the effects of ultra-low-dose transdermal estradiol therapy on bone turnover and BMD in postmenopausal women. J Bone Miner Res 2007; 22 (11) 1791-1797.
  • 25 Prestwood KM, Kenny AM, Kleppinger A, Kulldorff M. Ultralow-dose micronized 17beta-estradiol and bone density and bone metabolism in older women: a randomized controlled trial. JAMA 2003; 290 (08) 1042-1048.
  • 26 Mehta M, Strube P, Peters A. et al. Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: is osteoclast activity the key to age-related impaired healing?. Bone 2010; 47 (02) 219-228.
  • 27 Xing Z, Lu C, Hu D. et al. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. J Orthop Res 2010; 28 (08) 1000-1006.
  • 28 Egermann M, Heil P, Tami A. et al. Influence of defective bone marrow osteogenesis on fracture repair in an experimental model of senile osteoporosis. J Orthop Res 2010; 28 (06) 798-804.
  • 29 Wahl EC, Aronson J, Liu L. et al. Restoration of regenerative osteoblastogenesis in aged mice: modulation of TNF. J Bone Miner Res 2010; 25 (01) 114-123.
  • 30 Naik AA, Xie C, Zuscik MJ. et al. Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res 2009; 24 (02) 251-264.
  • 31 Kasper G, Mao L, Geissler S. et al. Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 2009; 27 (06) 1288-1297.
  • 32 Bajada S, Marshall MJ, Wright KT. et al. Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone 2009; 45 (04) 726-735.
  • 33 Lu C, Miclau T, Hu D. et al. Cellular basis for age-related changes in fracture repair. J Orthop Res 2005; 23 (06) 1300-1307.
  • 34 Li M, Healy DR, Li Y. et al. Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone 2005; 37 (01) 46-54.
  • 35 Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int 2005; 16 (Suppl. 02) S36-S43.
  • 36 Lu C, Hansen E, Sapozhnikova A. et al. Effect of age on vascularization during fracture repair. J Orthop Res 2008; 26 (10) 1384-1389.
  • 37 Strube P, Sentuerk U, Riha T. et al. Influence of age and mechanical stability on bone defect healing: age reverses mechanical effects. Bone 2008; 42 (04) 758-764.
  • 38 Hollinger JO, Onikepe AO, MacKrell J. et al. Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix. J Orthop Res 2008; 26 (01) 83-90.
  • 39 Prisby RD, Ramsey MW, Behnke BJ. et al. Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats. J Bone Miner Res 2007; 22 (08) 1280-1288.
  • 40 Blumenfeld I, Srouji S, Lanir Y. et al. Enhancement of bone defect healing in old rats by TGF-beta and IGF-1. Exp Gerontol 2002; 37 (04) 553-565.
  • 41 Stenderup K, Justesen J, Eriksen EF. et al. Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 2001; 16 (06) 1120-1129.
  • 42 Abdallah BM, Haack-Sorensen M, Fink T, Kassem M. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 2006; 39 (01) 181-188.
  • 43 Stolzing A, Scutt A. Age-related impairment of mesenchymal progenitor cell function. Aging Cell 2006; 05 (03) 213-224.
  • 44 Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev 2006; 05 (01) 91-116.
  • 45 Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33 (06) 919-926.
  • 46 Duncan EL, Brown MA. Clinical review 2: Genetic determinants of bone density and fracture risk--state of the art and future directions. J Clin Endocrinol Metab 2010; 95 (06) 2576-2587.
  • 47 Xu XH, Dong SS, Guo Y. et al. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31 (04) 447-505.
  • 48 Jepsen KJ, Price C, Silkman LJ. et al. Genetic variation in the patterns of skeletal progenitor cell differentiation and progression during endochondral bone formation affects the rate of fracture healing. J Bone Miner Res 2008; 23 (08) 1204-1216.
  • 49 Manigrasso MB, O’Connor JP. Comparison of fracture healing among different inbred mouse strains. Calcif Tissue Int 2008; 82 (06) 465-474.
  • 50 Colburn NT, Zaal KJ, Wang F, Tuan RS. A role for gamma/delta T cells in a mouse model of fracture healing. Arthritis Rheum 2009; 60 (06) 1694-1703.
  • 51 Kellum E, Starr H, Arounleut P. et al. Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone 2009; 44 (01) 17-23.
  • 52 Ota N, Takaishi H, Kosaki N. et al. Accelerated cartilage resorption by chondroclasts during bone fracture healing in osteoprotegerin-deficient mice. Endocrinology 2009; 150 (11) 4823-4834.
  • 53 Yamaguchi T, Takada Y, Maruyama K. et al. Fra- 1/AP-1 impairs inflammatory responses and chondrogenesis in fracture healing. J Bone Miner Res 2009; 24 (12) 2056-2065.
  • 54 Yukata K, Matsui Y, Shukunami C. et al. Altered fracture callus formation in chondromodulin-I deficient mice. Bone 2008; 43 (06) 1047-1056.
  • 55 Su N, Yang J, Xie Y. et al. Gain-of-function mutation of FGFR3 results in impaired fracture healing due to inhibition of chondrocyte differentiation. Biochem Biophys Res Commun 2008; 376 (03) 454-459.
  • 56 Holstein JH, Garcia P, Histing T. et al. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration. J Orthop Trauma 2009; 23 (Suppl. 05) S31-S38.
  • 57 Gaur T, Wixted JJ, Hussain S. et al. Secreted frizzled related protein 1 is a target to improve fracture healing. J Cell Physiol 2009; 220 (01) 174-181.
  • 58 Komatsu DE, Mary MN, Schroeder RJ. et al. Modulation of Wnt signaling influences fracture repair. J Orthop Res 2010; 28 (07) 928-936.
  • 59 Albers J, Schulze J, Gebauer M. et al. Control of Bone Formation by the Serpentine Receptor Frizzled-9. J Cell Biochem. 2011 in press..
  • 60 Bakker AD, Klein-Nulend J, Tanck E. et al. Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos Int 2006; 17 (06) 827-833.
  • 61 Stolzing A, Sellers D, Llewelyn O, Scutt A. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs 2010; 191 (06) 453-465.
  • 62 Sambrook PN. Anabolic therapy in glucocorticoidinduced osteoporosis. N Engl J Med 2007; 357 (20) 2084-2086.
  • 63 Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 2007; 357 (09) 905-916.
  • 64 Jakob F, Seefried L, Ebert R. Pathophysiology of bone metabolism. Internist 2008; 49 (10) 1159-1160. 1162, 1164 passim..
  • 65 Fu L, Tang T, Miao Y. et al. Effect of 1,25-dihydroxy vitamin D3 on fracture healing and bone remodeling in ovariectomized rat femora. Bone 2009; 44 (05) 893-898.
  • 66 Doetsch AM, Faber J, Lynnerup N. et al. The effect of calcium and vitamin D3 supplementation on the healing of the proximal humerus fracture: a randomized placebo-controlled study. Calcif Tissue Int 2004; 75 (03) 183-188.
  • 67 Barnes GL, Kakar S, Vora S. et al. Stimulation of fracture-healing with systemic intermittent parathyroid hormone treatment. J Bone Joint Surg Am 2008; 90 (Suppl. 01) 120-127.
  • 68 Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop 2010; 81 (02) 234-236.
  • 69 Aspenberg P, Genant HK, Johansson T. et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 2010; 25 (02) 404-414.
  • 70 Habermann B, Kafchitsas K, Olender G. et al. Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 2010; 86 (01) 82-89.
  • 71 Hao Y, Dai K, Guo L. et al. Effects of recombinant human growth hormone (r-hGH) on experimental osteoporotic fracture healing. Chin J Traumatol 2001; 04 (02) 102-105.
  • 72 Wang JW, Xu SW, Yang DS, Lv RK. Locally applied simvastatin promotes fracture healing in ovariectomized rat. Osteoporos Int 2007; 18 (12) 1641-1650.
  • 73 Skoglund B, Forslund C, Aspenberg P. Simvastatin improves fracture healing in mice. J Bone Miner Res 2002; 17 (11) 2004-2008.
  • 74 Ulrich-Vinther M, Schwarz EM, Pedersen FS. et al. Gene therapy with human osteoprotegerin decreases callus remodeling with limited effects on biomechanical properties. Bone 2005; 37 (06) 751-758.
  • 75 Goldhahn J, Scheele WH, Mitlak BH. et al. Clinical evaluation of medicinal products for acceleration of fracture healing in patients with osteoporosis. Bone 2008; 43 (02) 343-347.