Osteologie 2011; 20(03): 197-202
DOI: 10.1055/s-0037-1619993
Knochenzellbiologie und Osteoporosetherapie
Schattauer GmbH

Wnt-Signalwege im Knochenstoffwechsel

Wnt signaling pathways and bone turnover
M. Peterlik
1   Institut für Pathophysiologie, Medizinische Universität Wien, Österreich
› Author Affiliations
Further Information

Publication History

eingereicht: 15 August 2011

angenommen: 22 August 2011

Publication Date:
30 December 2017 (online)

Zusammenfassung

Sowohl der „kanonische” Wnt-Signalweg mit β-Catenin als terminalem Effektor als auch der „nicht-kanonische” Wnt/Ca++-Weg, in dem intrazelluläres Ca++ als „second messenger” fungiert, spielen beim kontinuierlichen Umbau des Knochens („bone remodeling”) eine wichtige Rolle: Sie koordinieren die einzelnen Phasen der Knochenneubildung (von der osteogenen Differenzierung pluripotenter mesenchymaler Stammzellen bis zur Bildung einer mineralisierten Matrix durch reife Osteoblasten bzw. Osteozyten), regulieren aber auch die Differenzierung und Aktivierung von Osteoklasten. Aufbau und Erhalt der Knochenmasse ist weitgehend genetisch determiniert, und zwar durch das Ausmaß der Expression der für die einzelnen Komponenten der Wnt/β-Catenin-Signalkaskade, insbesondere für den Wnt-Korezeptor LRP5, kodierenden Gene. Sowohl über die Schnittstellen mit anderen Signalwegen, die z. B. von RANK/ RANKL, PTH, 1,25-(OH)2D3/VDR oder Ca++/CaR aktiviert werden, als auch durch Blockade der Wnt-Inhibitoren Dkk-1 und Sklerostin ergeben sich zahlreiche Möglichkeiten, die Effektivität der Wnt/β-Catenin-Signalkaskade positiv zu beeinflussen, was zur Prävention und Therapie der verschiedenen Formen der Osteoporose genutzt werden kann.

Summary

Both the “canonical” Wnt signaling pathway with β-catenin as its key downstream effector as well as the “non-canonical” Wnt/Ca++ pathway, which uses intracellular Ca++ as “second messenger”, play a key role in the control of bone remodeling. The Wnt signaling cascades coordinate the multiple phases in the process of bone formation (from osteogenic differentiation of pluripotent mesenchymal stem cells to matrix maturation and mineralization by fully differentiated osteoblasts and osteocytes), and also regulate differentiation and activation of osteoclasts. Accrual and maintenance of bone mass is genetically determined, mainly through expression of the genes that encode the components of the Wnt/β-catenin signaling pathway, particularly the Wnt co-receptor LRP5. Modulation of efficiency of Wnt-activated pathways, e. g. by costimulatory signals from pathways activated by RANK/RANKL, PTH, 1,25-(OH)2D3/VDR, and Ca++/CaR, or by blocking Wnt-Inhibitors like Dkk-1 and sclerostin, respectively, provides a means for prevention and therapy of primary and secondary osteoporosis.

 
  • Literatur

  • 1 Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127 (03) 469-480.
  • 2 Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 2005; 38 (3–4): 439-446.
  • 3 Kaiser E, Delling G. Osteozyten – ein Organ im Aufwind morphologischer und zellbiologischer Forschung!. Osteologie 2002; 11: 219-236.
  • 4 Duplomb L, Dagouassat M, Jourdon P, Heymann D. Concise review: embryonic stem cells: a new tool to study osteoblast and osteoclast differentiation. Stem Cells 2007; 25 (03) 544-552.
  • 5 Krause C, de Gorter DJJ, Karperien M, ten Dijke P. Signal Transduction Cascades Controlling Osteoblast Differentiation. In: Primer of the Metabolic Bone Diseases. 7th ed. Am Soc Bone Miner Res 2008; 10-14.
  • 6 Baron R, Rawadi G. Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 2007; 148 (06) 2635-2643.
  • 7 Pinzone JJ, Hall BM, Thudi NK. et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009; 113 (03) 517-525.
  • 8 Miclea RL, Karperien M, Langers AM. et al. APC mutations are associated with increased bone mineral density in patients with familial adenomatous polyposis. J Bone Miner Res 2010; 25 (12) 2348-2356.
  • 9 Miclea RL, Karperien M, Bosch CA. et al. Adenomatous polyposis coli-mediated control of beta-catenin is essential for both chondrogenic and osteogenic differentiation of skeletal precursors. BMC Dev Biol 2009; 09: 26.
  • 10 Cui Y, Niziolek PJ, Macdonald BT. et al. Lrp5 functions in bone to regulate bone mass. Nat Med 2011; 17 (06) 684-691.
  • 11 Bonewald L. The holy grail of high bone mass. Nat Med 2010; 17 (06) 657-658.
  • 12 Rochefort GY, Pallu S, Benhamou CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos Int 2010; 21 (09) 1457-1469.
  • 13 Paszty C, Turner CH, Robinson MK. Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 2010; 25 (09) 1897-1904.
  • 14 Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 2009; 13 (04) 485-496.
  • 15 Diarra D, Stolina M, Polzer K. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13 (02) 156-163.
  • 16 Heiland GR, Zwerina K, Baum W. et al. Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 2010; 69 (12) 2152-2159.
  • 17 Takahashi N, Maeda K, Ishihara A. et al. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci 2011; 16: 21-30.
  • 18 Atkins GJ, Anderson PH, Findlay DM. et al. Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone 2007; 40 (06) 1517-1528.
  • 19 Owen TA, Aronow MS, Barone LM. et al. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology 1991; 128 (03) 1496-1504.
  • 20 Fretz JA, Zella LA, Kim S. et al. 1,25-Dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribo-nucleic acid sequence elements located downstream of the start site of transcription. Mol Endocrinol 2006; 20 (09) 2215-2230.
  • 21 Cianferotti L, Demay MB. VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J Cell Biochem 2007; 101 (01) 80-88.
  • 22 Palmer HG, Gonzalez-Sancho JM. et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 2001; 154 (02) 369-387.
  • 23 Shah S, Islam MN, Dakshanamurthy S. et al. The molecular basis of vitamin D receptor and betacatenin crossregulation. Mol Cell 2006; 21 (06) 799-809.
  • 24 Tfelt-Hansen J, Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit Rev Clin Lab Sci 2005; 42 (01) 35-70.
  • 25 Brown EM, Yang JJ. Biochemistry and biology of the extracellular calcium-sensing receptor. Bone 2009; 44: S201-S202.
  • 26 Yamaguchi T, Chattopadhyay N, Kifor O. et al. Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J Bone Miner Res 1998; 13 (10) 1530-1538.
  • 27 Dvorak MM, Riccardi D. Ca2+ as an extracellular signal in bone. Cell Calcium 2004; 35 (03) 249-255.
  • 28 Dvorak MM, Siddiqua A, Ward DT. et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A 2004; 101 (14) 5140-5145.
  • 29 Chakrabarty S, Radjendirane V, Appelman H, Varani J. Extracellular calcium and calcium sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of beta-catenin/TCF activation. Cancer Res 2003; 63 (01) 67-71.
  • 30 MacLeod RJ, Hayes M, Pacheco I. Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am J Physiol Gastrointest Liver Physiol 2007; 293 (01) G403-G411.
  • 31 Godwin SL, Soltoff SP. Calcium-sensing receptormediated activation of phospholipase C-gamma1 is downstream of phospholipase C-beta and protein kinase C in MC3T3-E1 osteoblasts. Bone 2002; 30 (04) 559-566.
  • 32 Kaneuji T, Ariyoshi W, Okinaga T. et al. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts. Biochem Biophys Res Commun 2011; 408 (01) 103-109.
  • 33 Takahashi N, Maeda K, Ishihara A. et al. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci 2011; 16: 21-30.
  • 34 Boonen S, Vanderschueren D, Haentjens P, Lips P. Calcium and vitamin D in the prevention and treatment of osteoporosis - a clinical update. J Intern Med 2006; 259 (06) 539-552.
  • 35 Lips P, Bouillon R, van Schoor NM. et al. Reducing fracture risk with calcium and vitamin D. Clin Endocrinol (Oxf) 2010; 73 (03) 277-285.
  • 36 Jakob F, Benisch P, Ebert R. et al. Zelluläre Defekte und Regulationsstörungen bei der Heilung osteoporotischer Frakturen. Osteologie 2011; 20: 23-28.