Semin Neurol 2018; 38(01): 005-010
DOI: 10.1055/s-0037-1620238
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Origin of Gliomas

Daniel Cahill
1   Massachusetts General Hospital Brain Tumor Center, Boston, Massachussetts
,
Sevin Turcan
2   Department of Neurology, Heidelberg University Hospital/National Center for Tumor Diseases, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
16 March 2018 (online)

Abstract

Malignant glioma is a common type of brain tumor that remains largely incurable. Although a definitive cell of origin of gliomas remains elusive, numerous population studies, sequencing efforts, and genetically engineered mouse models have contributed to our understanding of the early events that may lead to gliomagenesis. Herein we summarize our current knowledge on the population epidemiology of gliomas, heritable genetic risk factors, the somatic events that contribute to tumor evolution, and mouse models that have shed light on the glioma cell of origin. Future studies will increase our understanding of the sequence of early events within susceptible cells and their niche that trigger the path to malignant transformation. Such knowledge will allow us to design more effective treatment options to control tumor growth or screening methods for early detection.

 
  • References

  • 1 Parsons DW, Jones S, Zhang X. , et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321 (5897): 1807-1812
  • 2 Yan H, Parsons DW, Jin G. , et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360 (08) 765-773
  • 3 Turcan S, Rohle D, Goenka A. , et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012; 483 (7390): 479-483
  • 4 Duncan CG, Barwick BG, Jin G. , et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 2012; 22 (12) 2339-2355
  • 5 Noushmehr H, Weisenberger DJ, Diefes K. , et al; Cancer Genome Atlas Research Network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17 (05) 510-522
  • 6 Brat DJ, Verhaak RG, Aldape KD. , et al; Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015; 372 (26) 2481-2498
  • 7 Brennan CW, Verhaak RG, McKenna A. , et al; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013; 155 (02) 462-477
  • 8 Lawrence MS, Stojanov P, Polak P. , et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499 (7457): 214-218
  • 9 Ostrom QT, Gittleman H, Xu J. , et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro Oncol 2016; 18 (Suppl. 05) v1-v75
  • 10 McKinley BP, Michalek AM, Fenstermaker RA, Plunkett RJ. The impact of age and sex on the incidence of glial tumors in New York state from 1976 to 1995. J Neurosurg 2000; 93 (06) 932-939
  • 11 Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 2002; 4 (04) 278-299
  • 12 Miranda-Filho A, Piñeros M, Soerjomataram I, Deltour I, Bray F. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol 2017; 19 (02) 270-280
  • 13 Li J, Chen Q, Liu B, Yang J, Shao L, Wu T. Association between X-ray repair cross-complementing group 1 gene polymorphisms and glioma risk: a systematic review and meta-analysis based on 22 case-control studies. Int J Clin Exp Med 2015; 8 (08) 11863-11880
  • 14 Bohman LE, Swanson KR, Moore JL. , et al. Magnetic resonance imaging characteristics of glioblastoma multiforme: implications for understanding glioma ontogeny. Neurosurgery 2010; 67 (05) 1319-1327 , discussion 1327–1328
  • 15 Lim DA, Cha S, Mayo MC. , et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 2007; 9 (04) 424-429
  • 16 Steed TC, Treiber JM, Patel K. , et al. Differential localization of glioblastoma subtype: implications on glioblastoma pathogenesis. Oncotarget 2016; 7 (18) 24899-24907
  • 17 Lai A, Kharbanda S, Pope WB. , et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 2011; 29 (34) 4482-4490
  • 18 Gorovets D, Kannan K, Shen R. , et al. IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma. Clin Cancer Res 2012; 18 (09) 2490-2501
  • 19 Qi S, Yu L, Li H. , et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncol Lett 2014; 7 (06) 1895-1902
  • 20 Sun ZL, Chan AK, Chen LC. , et al. TERT promoter mutated WHO grades II and III gliomas are located preferentially in the frontal lobe and avoid the midline. Int J Clin Exp Pathol 2015; 8 (09) 11485-11494
  • 21 Chen R, Nishimura MC, Kharbanda S. , et al. Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma. Proc Natl Acad Sci U S A 2014; 111 (39) 14217-14222
  • 22 Shashidharan P, Plaitakis A. The discovery of human of GLUD2 glutamate dehydrogenase and its implications for cell function in health and disease. Neurochem Res 2014; 39 (03) 460-470
  • 23 Burki F, Kaessmann H. Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 2004; 36 (10) 1061-1063
  • 24 Ostrom QT, Bauchet L, Davis FG. , et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 2014; 16 (07) 896-913
  • 25 Linos E, Raine T, Alonso A, Michaud D. Atopy and risk of brain tumors: a meta-analysis. J Natl Cancer Inst 2007; 99 (20) 1544-1550
  • 26 Wiemels JL, Wiencke JK, Kelsey KT. , et al. Allergy-related polymorphisms influence glioma status and serum IgE levels. Cancer Epidemiol Biomarkers Prev 2007; 16 (06) 1229-1235
  • 27 Wrensch M, Wiencke JK, Wiemels J. , et al. Serum IgE, tumor epidermal growth factor receptor expression, and inherited polymorphisms associated with glioma survival. Cancer Res 2006; 66 (08) 4531-4541
  • 28 Amirian ES, Scheurer ME, Zhou R. , et al. History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC). Cancer Med 2016; 5 (06) 1352-1358
  • 29 Bondy ML, Scheurer ME, Malmer B. , et al; Brain Tumor Epidemiology Consortium. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008; 113 (7, Suppl): 1953-1968
  • 30 Walsh KM, Ohgaki H, Wrensch MR. Epidemiology. Handb Clin Neurol 2016; 134: 3-18
  • 31 Blumenthal DT, Cannon-Albright LA. Familiality in brain tumors. Neurology 2008; 71 (13) 1015-1020
  • 32 Steenweg ME, Jakobs C, Errami A. , et al. An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study. Hum Mutat 2010; 31 (04) 380-390
  • 33 Aghili M, Zahedi F, Rafiee E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 2009; 91 (02) 233-236
  • 34 Dang L, White DW, Gross S. , et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2010; 465 (7300): 966
  • 35 Malmer B, Henriksson R, Grönberg H. Different aetiology of familial low-grade and high-grade glioma? A nationwide cohort study of familial glioma. Neuroepidemiology 2002; 21 (06) 279-286
  • 36 Paunu N, Lahermo P, Onkamo P. , et al. A novel low-penetrance locus for familial glioma at 15q23-q26.3. Cancer Res 2002; 62 (13) 3798-3802
  • 37 Sanson M, Hosking FJ, Shete S. , et al. Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet 2011; 20 (14) 2897-2904
  • 38 Shete S, Hosking FJ, Robertson LB. , et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 2009; 41 (08) 899-904
  • 39 Wrensch M, Jenkins RB, Chang JS. , et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 2009; 41 (08) 905-908
  • 40 Kinnersley B, Labussière M, Holroyd A. , et al. Genome-wide association study identifies multiple susceptibility loci for glioma. Nat Commun 2015; 6: 8559
  • 41 Walsh KM, Codd V, Smirnov IV. , et al; ENGAGE Consortium Telomere Group. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet 2014; 46 (07) 731-735
  • 42 Rajaraman P, Melin BS, Wang Z. , et al. Genome-wide association study of glioma and meta-analysis. Hum Genet 2012; 131 (12) 1877-1888
  • 43 Jenkins RB, Xiao Y, Sicotte H. , et al. A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet 2012; 44 (10) 1122-1125
  • 44 Oktay Y, Ülgen E, Can Ö. , et al. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Sci Rep 2016; 6: 27569
  • 45 Melin BS, Barnholtz-Sloan JS, Wrensch MR. , et al; GliomaScan Consortium. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet 2017; 49 (05) 789-794
  • 46 Patel AP, Tirosh I, Trombetta JJ. , et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344 (6190): 1396-1401
  • 47 Szerlip NJ, Pedraza A, Chakravarty D. , et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 2012; 109 (08) 3041-3046
  • 48 Sottoriva A, Spiteri I, Piccirillo SG. , et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 2013; 110 (10) 4009-4014
  • 49 Snuderl M, Fazlollahi L, Le LP. , et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 2011; 20 (06) 810-817
  • 50 Ozawa T, Riester M, Cheng YK. , et al. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 2014; 26 (02) 288-300
  • 51 Wang J, Cazzato E, Ladewig E. , et al. Clonal evolution of glioblastoma under therapy. Nat Genet 2016; 48 (07) 768-776
  • 52 Singh D, Chan JM, Zoppoli P. , et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 2012; 337 (6099): 1231-1235
  • 53 Lee JK, Wang J, Sa JK. , et al. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat Genet 2017; 49 (04) 594-599
  • 54 Chin L, Meyerson M, Aldape K. , et al; Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455 (7216): 1061-1068
  • 55 Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 2009; 174 (04) 1149-1153
  • 56 Watanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome. Acta Neuropathol 2009; 117 (06) 653-656
  • 57 Suzuki H, Aoki K, Chiba K. , et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 2015; 47 (05) 458-468
  • 58 Bardella C, Al-Dalahmah O, Krell D. , et al. Expression of Idh1R132H in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 2016; 30 (04) 578-594
  • 59 Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A. Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 2004; 76 (02) 223-231
  • 60 Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97 (06) 703-716
  • 61 Mich JK, Signer RAJ, Nakada D. , et al. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014; 3: e02669
  • 62 Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med 2005; 353 (08) 811-822
  • 63 Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414 (6859): 105-111
  • 64 Clark PA, Treisman DM, Ebben J, Kuo JS. Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn 2007; 236 (12) 3297-3308
  • 65 Shoshan Y, Nishiyama A, Chang A. , et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci U S A 1999; 96 (18) 10361-10366
  • 66 Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36 (06) 1021-1034
  • 67 Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000; 425 (04) 479-494
  • 68 Riddick G, Kotliarova S, Rodriguez V. , et al. A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional Program of Neural Stem Cell Identity. Sci Rep 2017; 7: 43605 . doi: 10.1038/srep43605
  • 69 Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000; 25 (01) 55-57
  • 70 Alcantara Llaguno S, Chen J, Kwon CH. , et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 2009; 15 (01) 45-56
  • 71 Jacques TS, Swales A, Brzozowski MJ. , et al. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J 2010; 29 (01) 222-235
  • 72 Alcantara Llaguno SR, Wang Z, Sun D. , et al. Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell 2015; 28 (04) 429-440
  • 73 Lindberg N, Jiang Y, Xie Y. , et al. Oncogenic signaling is dominant to cell of origin and dictates astrocytic or oligodendroglial tumor development from oligodendrocyte precursor cells. J Neurosci 2014; 34 (44) 14644-14651
  • 74 Sasaki M, Knobbe CB, Itsumi M. , et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 2012; 26 (18) 2038-2049
  • 75 Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15 (15) 1913-1925
  • 76 Bachoo RM, Maher EA, Ligon KL. , et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1 (03) 269-277
  • 77 Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 2002; 62 (19) 5551-5558
  • 78 Friedmann-Morvinski D, Bushong EA, Ke E. , et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012; 338 (6110): 1080-1084
  • 79 Venteicher AS, Tirosh I, Hebert C. , et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 2017; 355 (6332): eaai8478
  • 80 Holland JP, Evans MJ, Rice SL, Wongvipat J, Sawyers CL, Lewis JS. Annotating MYC status with 89Zr-transferrin imaging. Nat Med 2012; 18 (10) 1586-1591