Nervenheilkunde 2008; 27(05): 390-393
DOI: 10.1055/s-0038-1627330
Original- und Übersichtsarbeiten - Original and Review Articles
Schattauer GmbH

Welche Rolle spielt der insuläre Kortex beim Schlucken?

Which role does the insular cortex play in swallowing?
M. Prosiegel
1   Zentrum für Schluckstörungen, m&i Fachklinik Bad Heilbrunn, Bad Heilbrunn
› Author Affiliations
Further Information

Publication History

Eingegangen am: 29 November 2007

angenommen am: 01 December 2007

Publication Date:
20 January 2018 (online)

Zusammenfassung

Die Insel wird in einen hinteren granulären (Brodmann- Area [BA 13]) und einen vorderen agranulären (BA 14–16) Abschnitt unterteilt. Während die granuläre hintere Insel unter anderem somatosensible, vestibuläre und akustische Informationen verarbeitet, erfüllt die agranuläre vordere Insel neben sprechmotorischen auch ,,limbische“ Aufgaben: Verarbeitung gustatorischer, olfaktorischer und viszeroafferenter Informationen bzw. Kontrolle viszeromotorischer Abläufe. Funktionell-bildgebende Studien zeigten, dass die anteriore Insel bei willkürlichem, nicht aber bei reflektorischem Schluckvorgang aktiv ist. Sie ist funktionell eingebettet in ein weitverzweigtes sensomotorisches Netzwerk für das Schlucken, wobei sie bidirektionale Verbindungen zu motorischen und supplementär-motorischen Kortexgebieten, zum Thalamus und zu limbischen Hirnstammarealen, insbesondere zum Nucleus tractus solitarii aufweist. Dadurch wird die vordere Insel in die Lage versetzt, einerseits den Schluckvorgang zu initiieren und ihn andererseits in Abhängigkeit von gustatorischen und somatosensiblen Reizen aus dem oropharyngolaryngealen Bereich zu modulieren. Isolierte einseitige Läsionen der schluckdominanten Insel können wahrscheinlich zu einer Dysphagie führen.

Summary

The human insula has historically been divided into a posterior granular part (corresponding to Brodmann‘s area [BA] 13) and an anterior agranular region (BA 14-16). The granular part displays characteristics of somatosensory, auditory and vestibular cortex, whereas the agranular insula is involved with gustatory, olfactory, visceral and other “limbic” functions. Functional brain imaging studies have recently shown that the anterior insula plays a role in volitional swallowing. It is part of a widely distributed swallowing network and has bidirectional connections with the primary and supplementary motor cortex, with the thalamus and with limbic brainstem regions, especially with the solitary tract nucleus. Thus, the anterior insula is likely to play a crucial role in swallowing, firstly by initiating deglutition and secondly in modifying the swallow pattern in association with gustatory and somatosensory inputs from the oropharyngolaryngeal region. Isolated unilateral lesions of the swallowing-dominant insula may directly induce dysphagia.

 
  • Literatur

  • 1 Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 1996; 22: 229-244.
  • 2 Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 1980; 190: 259-282.
  • 3 Brandt T, Dieterich M, Danek A. Vestibular cortex lesions affect the perception of verticality. Ann Neurol 1994; 35: 403-412.
  • 4 Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde: in ihren Principien dargestellt auf Grund des Zellenbaues. Leipzig: Barth; 1909
  • 5 Cereda C, Ghika J, Maeder P, Bogousslavsky J. Strokes restricted to the insular cortex. Neurology 2002; 59: 1950-1955.
  • 6 Damasio H, Damasio A. Lesion analysis in neuropsychology. New York, Oxford: Oxford University Press; 1989
  • 7 Daniels SK. Swallowing apraxia: a disorder of the praxis system?. Dysphagia 2000; 15: 159-166.
  • 8 Daniels SK, Foundas AL. The role of the insular cortex in dysphagia. Dysphagia 1997; 12: 146-156.
  • 9 Finley A, Saver JL, Alger J, Pregenzer M, Leary MC, Ovbiagele B, Tremwel M, Starkman S, Kidwell CS. Diffusion weighted imaging assessment of insular vulnerability in acute middle cerebral artery infarctions. Stroke 2003; 34: 259.
  • 10 Furlong PL, Hobson AR, Aziz Q, Barnes GR, Singh KD, Hillebrand A, Thompson DG, Hamdy S. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage 2004; 22: 1447-1455.
  • 11 Gorman DG, Unützer J. Brodmann´s missing numbers. Neurology 1993; 43: 226-227.
  • 12 Hamdy S, Rothwell JC, Brooks DJ, Bailey D, Aziz Q, Thompson DG. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. J Neurophysiol 1999; 81: 1917-1926.
  • 13 Humbert IA, Robbins J. Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia 2007; 22: 266-275.
  • 14 Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 2001; 81: 929-969.
  • 15 Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol 2001; 280: G354-G360.
  • 16 Mesulam MM. From sensation to cognition. Brain 1998; 121: 1013-1051.
  • 17 Mesulam MM. Principles of behavioral and cognitive neurology. Oxford, New York: Oxford University Press; 2000
  • 18 Mesulam M-M, Mufson EJ. Insula of the old world monkey. III: efferent cortical output and comments on function. J Comp Neurol 1982; 212: 38-52.
  • 19 Miller A. Neurophysiological basis of swallowing. Dysphagia 1986; 1: 91-100.
  • 20 Miller AJ. The search for the central swallowing pathway: the quest for clarity. Dysphagia 1993; 8: 185-194.
  • 21 Mufson EJ, Mesulam MM. Thalamic connections of the insula in the Rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. J Comp Neurol 1984; 227: 109-120.
  • 22 Olszewski J, Baxter D. Cytoarchitecture of the Human Brain Stem. Basel, New York: Karger; 1982
  • 23 Penfield W, Boldrey E. Somatic motor and sensory represantationin the cerebral cortex of man as studied by electrical stimulation. Brain Res 1937; 60: 389-343.
  • 24 Penfield W, Faulk ME. The insula; further observations on its function. Brain 1955; 78: 445-470.
  • 25 Power ML, Hamdy S, Singh S, Tyrrell PJ, Turnbull I, Thompson DG. Deglutitive laryngeal closure in stroke patients. J Neurol Neurosurg Psychiatry 2007; 78: 141-146.
  • 26 Robbins J, Levin RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia 1988; 3: 11-17.
  • 27 Shelley BP, Trimble MR. The insular lobe of Reil – Its anatamico-functional, behavioural and neuropsychiatric attributes in humans – a review. World J Biol Psychiatry 2004; 5: 176-200.
  • 28 Shipley MT. Insular cortex projections to the nucleus of the solitary tract and brainstem visceromotor regions in the mouse. Brain Res Bull 1982; 8: 139-148.
  • 29 Stickler D, Gilmore R, Rosenbek JC, Donovan NJ. Dysphagia with bilateral lesions of the insular cortex. Dysphagia 2003; 18: 179-181.
  • 30 Villiger E. Gehirn und Rückenmark. Leipzig: Verlag von Wilhelm Engelmann; 1922
  • 31 Watanabe Y, Abe S, Ishikawa T, Yamada Y, Yamane GY. Cortical regulation during the early stage of initiation of voluntary swallowing in humans. Dysphagia 2004; 19: 100-108.
  • 32 Zülch KJ. The cerebral infarct. Berlin, Heidelberg, New York, Tokyo: Spinger; 1985