Methods Inf Med 2004; 43(01): 74-78
DOI: 10.1055/s-0038-1633839
Original Article
Schattauer GmbH

Independent Component Analysis Compared to Laplacian Filtering as ”Deblurring” Techniques for Event Related Desynchronization/ Synchronization

G. Foffani
1   Dipartimento di Bioingegneria, Politecnico di Milano, Italy
,
A. M. Bianchi
1   Dipartimento di Bioingegneria, Politecnico di Milano, Italy
,
F. Cincotti
5   IRCCS Fondazione Santa Lucia, Roma, Italy
,
C. Babiloni
2   Dipartimento di Fisiologia umana e Farmacologia, Università “La Sapienza”, Roma, Italy
3   AFaR CRCCS – Dipartimento di Neurologia, Osp. FBF Isola Tiberina, Roma, Italy
,
F. Carducci
2   Dipartimento di Fisiologia umana e Farmacologia, Università “La Sapienza”, Roma, Italy
3   AFaR CRCCS – Dipartimento di Neurologia, Osp. FBF Isola Tiberina, Roma, Italy
,
F. Babiloni
2   Dipartimento di Fisiologia umana e Farmacologia, Università “La Sapienza”, Roma, Italy
3   AFaR CRCCS – Dipartimento di Neurologia, Osp. FBF Isola Tiberina, Roma, Italy
,
P. M. Rossini
4   IRCCS “S. Giovanni di Dio”, Brescia, Italy
,
S. Cerutti
1   Dipartimento di Bioingegneria, Politecnico di Milano, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
07 February 2018 (online)

Summary

Objectives: The aim of the work was to compare two different approaches – one model-dependent, the other data-dependent – for “deblurring” EEG data, in order to improve the estimation of Event-Related Desynchronization/Synchronization.

Methods: Realistic Surface Laplacian filtering (SL) and Infomax Independent Component Analysis (ICA) were applied on multivariate scalp EEG signals (SL: 128 electrodes with MRI-based realistic modeling; ICA: a subset of 19 electrodes, no MRI) prior to beta Event Related Synchronization (ERS) estimation after finger movement in 8 normal subjects. ERS estimation was performed using standard band-pass filtering. ERS peak amplitudes and latencies in the most responsive channel were calculated and the effect of the two methods above was evaluated by one-way analysis of variance (ANOVA) and Sheffe’s test.

Results: Both methods and their combination significantly improved ERS estimation (greater ERS peak amplitude, p <0.05). The results obtained after ICA on 19 electrodes were not significantly different than the ones obtained with Realistic SL using 128 electrodes and MRI for scalp modeling (p >0.89).

Conclusions: The “low cost” of ICA (19 electrodes, no MRI) imposes such method as a valid alternative to SL filtering. The employ of ICA after SL filtering suggests that the “ideal EEG deblurring method” would unify the two approaches, depending on both the scalp model and the data.

 
  • References

  • 1 Pfurtscheller G, Lopes da Silva FH. Event related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999; 110: 1842-57.
  • 2 Nunez P. Localization of brain activity with electro-encephalography. In Sato S. (ed) Magnetoencephalography, Advances in neurology, 54. New York: Raven Press; 1990
  • 3 Perrin F, Bertrand O, Pernier J. Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng 1987; 34: 283-7.
  • 4 Makeig S, Enghoff S, Jung T-P, Sejnowski TJ. A Natural Basis for Efficient Brain-Actuated Control. IEEE Trans on Rehabilit Eng 2000; 8: 2
  • 5 Hyvärinen A. Survey on Independent Component Analysis. Neural Computing Surveys 1999; 2: 94-128.
  • 6 Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Computation 1996; 7: 1129-59.
  • 7 Amari S, Cichocki A, Yang HH. A new learning algorithm for blind source separation. In: Advances in Neural Information Processing 8. 757-763. MIT Press; Cambridge, MA: 1996
  • 8 Bianchi AM, Foffani G, Cerutti S, Babiloni C, Rossini PM, Carducci F, Babiloni F, Cincotti F. Time frequency analysis and spatial filtering in the evaluation of beta ERS after finger movement. EMBC2001 Proc, 23rd Ann Intern Conf of the IEEE EMBS. Istanbul, Turkey, October. 2001
  • 9 Makeig S. et al. “ICA Toolbox for Psychophysiological Research”. WWW Site, Computational Neurobiology Laboratory, The Salk Institute for Biological Studies. www.cnl.salk.edu/~scott/ica.html [World Wide Web Publication], Dec. 13 2000