RSS-Feed abonnieren
DOI: 10.1055/s-0038-1633890
MRI-Based Individual 3D Region-of-Interest Atlases of the Human Brain
A New Method for Analyzing Functional DataPublikationsverlauf
Publikationsdatum:
05. Februar 2018 (online)
Summary
Objectives: Introduction of a new atlas-based method for analyzing functional data which takes into account the variability of individual human brains and the partial volume effects of functional emission computed tomography images in complex anatomical 3D regions, as well as describing the underlying multi-modal image processing principles.
Methods: 3D atlas extraction is done directly by automated segmentation of individual magnetic resonance images of the patient’s head. This is done in two steps: voxel-based classification of T1-weighted images for tissue differentiation (low-level processing) is followed by knowledge-based analysis of the classified images for extraction of 3D anatomical regions (high-level processing). For atlas-based quantification of co-registered functional images, 3D anatomical regions can be convoluted with an idealized point spread function of the emission computed tomography system, after which a partial volume-dependent threshold can be determined.
Results: Quantitative evaluation studies, based on 50 realistic software head phantoms and 24 image data sets obtained from healthy subjects and patients, show low misclassification rates and stable results for the neural network-based classification approach (mean ± SD 3.587 ± 0.466%, range 2.726-4.927%) as well as for the adjustable parameters of the knowledge-based approach. Computation time is <5 min for classification, <1 min for most of the extraction algorithms. The influence of the partial volume-dependent threshold is shown for an activation study.
Conclusions: This new method allows 3D atlas generation without the need to warp individual image data to an anatomical or statistical brain atlas. Going beyond the purely tissue-oriented approach, partial volume effects of emission computed tomography images can be analyzed in complex anatomical 3D regions.
-
References
- 1 Coleman RE. Predictions for nuclear medicine in the next decade: Commentary. Radiology 1998; 208 (01) 6-7.
- 2 Claus JJ, Dubois EA, Booij J, Habraken J, de Munck JC, van Herk M, Verbeeten Jr B, van Royen EA. Demonstration of a reduction in muscarinic receptor binding in early Alzheimer’s disease using iodine-123 dexetimide single-photon emission tomography. Eur J Nucl Med 1997; 24 (06) 602-8.
- 3 Sabri O, Hellwig D, Schreckenberger M, Cremerius U, Schneider R, Kaiser HJ, Doherty C, Mull M, Ringelstein EB, Buell U. Correlation of neuropsychological, morphological and functional (regional cerebral blood flow and glucose utilization) findings in cerebral microangiopathy. J Nucl Med 1998; 39 (01) 147-54.
- 4 Baulieu JL, Ribeiro MJ, Levilion-Prunier C, Tranquart F, Chartier JR, Guilloteau D, Cottier JP, Besnard JC, Pourcelot L, Autret A. Effects of the method of drawing regions of interest on the differential diagnosis of extrapyramidal syndromes using 123I-iodolisuride SPET. Nucl Med Commun 1999; 20: 77-84.
- 5 Dupont S, Semah F, Loc’h C, Strijckmans V, Baulac M, Samson Y, Mazière B. In vivo imaging of muscarinic cholinergic receptors in temporal lobe epilepsy with a new PET tracer: [76Br]4-Bromodexetimide. J Nucl Med 1999; 40 (06) 935-41.
- 6 Evans AC, Beil C, Marrett S, Thompson CJ, Hakim A. Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J Cereb Blood Flow Metab 1988; 8 (04) 513-30.
- 7 Greitz T, Bohm C, Holte S, Eriksson L. A computerized brain atlas: Construction, anatomical content, and some applications. J Comput Assist Tomogr 1991; 15 (01) 26-38.
- 8 Resnick SM, Karp JS, Turetsky B, Gur RE. Comparison of anatomically defined versus physiologically based regional localization: Effects on {PET}-{FDG}quantitation. J Nucl Med 1993; 34 (12) 2201-7.
- 9 Rizzo G, Gilardi MC, Prinster A, Grassi F, Scotti G, Cerutti S, Fazio F. An elastic computerized brain atlas for the analysis of clinical PET/SPET data. Eur J Nucl Med 1995; 22 (11) 1313-8.
- 10 Collins DL, Holmes CJ, Peters TM, Evans AC. Automatic 3D model-based neuroanatomical segmentation. Hum Brain Map 1995; 3 (03) 190-208.
- 11 Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ. Spatial registration and normalization of images. Hum Brain Map 1995; 2: 165-89.
- 12 Lancaster JL, Rainey HJ, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC. Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transform method. Hum Brain Map 1997; 5: 238-42.
- 13 Talairach J, Tournoux P. Coplanar stereotaxic atlas of the human brain: 3-dimensional proportional system – an approach to cerebral imaging. Stuttgart, New York: Georg Thieme Verlag; 1988
- 14 Steinmetz H, Fuerst G, Freund HJ. Cerebral cortical localization: Application and validation of the proportional grid system in MR imaging. J Comput Assist Tomogr 1989; 13 (01) 10-9.
- 15 Steinmetz H. Individual variability of brain structure (and function). Proceedings of the 1st Aachen Conference, Neuropsychology in Neurosurgery, Psychiatry and Neurology. 1997: 7-8.
- 16 Levy AV, Volkow ND, Alexoff D, Logan J, Wang GJ. SPM95 Sensitivity to size, asymmetry of brain activation/deactivation patterns. J Nucl Med 1997; 37 (05) 41P-42P.
- 17 Amunts K, Zilles K. Advances in cytoarchitectonic mapping of the human cerebral cortex. Neuroimaging Clinics of North America 2001; 11 (02) 151-69.
- 18 Wagenknecht G, Kaiser HJ, Obladen T, Sabri O, Buell U. Individual 3D region-of-interest atlas of the human brain: neural network-based tissue classification with automatic training point extraction. Proceedings SPIE 2000; 3979: 306-17.
- 19 Wagenknecht G, Kaiser HJ, Sabri O, Buell U. Individual 3D region-of-interest atlas of the human brain: knowledge-based class image analysis for extraction of anatomical objects. Proceedings SPIE 2000; 3979: 318-29.
- 20 Wagenknecht G. Entwicklung eines Verfahrens zur Generierung individueller 3D-„Regionsof- Interest“-Atlanten des menschlichen Gehirns aus MRT-Bilddaten zur quantitativen Analyse koregistrierter funktioneller ECTBilddaten. Dissertation. Aachen: Shaker; 2002. (In German)
- 21 Rumelhardt DE, McClelland JL. Parallel Distributed Processing: Foundations. Cambridge: MIT Press; 1989
- 22 Wagenknecht G, Kaiser HJ, Obladen T, Sabri O, Buell U. Simulation of 3D MRI brain images for quantitative evaluation of image segmentation algorithms. Proceedings SPIE 2000; 3979: 1074-85.
- 23 Paulus DWR, Hornegger J. Applied Pattern Recognition. Wiesbaden: Vieweg; 1998
- 24 Wagenknecht G, Kaiser HJ, Sabri O, Buell U. MRI-based individual 3D region-of-interest atlas of the human brain: one step towards partial volume analysis of functional data. J Nucl Med 2001; 42: 7P
- 25 Wagenknecht G, Kaiser HJ, Sabri O, Buell U. MRI-based individual 3D region-of-interest atlas of the human brain: Influence of the partial partial volume threshold on the quantification of functional data. Eur J Nucl Med 2002; 29 Suppl (Suppl. 01) 157
- 26 Wagenknecht G, Kaiser HJ, Sabri O, Buell U. MRI-based individual 3D region-of-interest atlas of the human brain: an evaluation study. Neuro Image 2001; 13: S277
- 27 Meltzer CC, Zubieta JK, Links JM, Brakeman P, Stumpf MJ, Frost JJ. MR-based correction of brain PET measurements for heterogeneous gray matter radioactivity distribution. J Cereb Blood Flow Metab 1996; 16: 650-8.
- 28 Schreckenberger M, Gouzoulis-Mayfrank E, Sabri O, Arning C, Zimny M, Tuttass T, Wagenknecht G, Kaiser HJ, Sass H, Buell U. “Ecstasy”- induced changes of cerebral glucose metabolism and their correlation to acute psychopathology. An 18-FDG PET study. Eur J Nucl Med 1999; 26: 1572-9.