Methods Inf Med 2005; 44(02): 154-160
DOI: 10.1055/s-0038-1633937
Original Article
Schattauer GmbH

Partitioning Medical Image Databases for Content-based Queries on a Grid

J. Montagnat
1   CREATIS, CNRS UMR 5515-INSERM U670, Villeurbanne, France
,
V. Breton
2   LPC, CNRS, Villeurbanne, France
,
I. E. Magnin
1   CREATIS, CNRS UMR 5515-INSERM U670, Villeurbanne, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
05. Februar 2018 (online)

Summary

Objectives: In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes.

Methods: A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database.

Results: We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time.

Conclusions: Grids are promising for content-based image retrieval in medical databases.

 
  • References

  • 1 MEDIGRID, French ministry for Reseach ACIGRID project. http://www.creatis.insa-lyon.fr/MEDIGRID/.
  • 2 Tweed T, Miguet S. Distributed indexation of a mammographic database using the grid. International Workshop on Grid Computing and e-Science. 17th Annual ACM International Conference on Supercomputing. San Francisco, USA: June 2003
  • 3 Montagnat J, Duque H, Pierson JM, Breton V, Brunie L, Magnin IE. Medical Image Content- Based Queries using the Grid. Proceedings of the first European Health Grid conference. Lyon, France: January 2003: 142-51.
  • 4 Montagnat J, Breton V, Magnin IE. Using grid technologies to face medical image analysis challenges, Biogrid’03, proceedings of the IEEE CCGrid03, May. Tokyo: Japan; 2003: 588-93.
  • 5 Claerhout B, De Moor G. From GRID to Health- GRID: introducing Privacy Protection. Proceedings of the first European Health Grid conference. Lyon, France: January 2003: 152-62.
  • 6 Seitz L, Pierson JM, Brunie L. Key management for encrypted data storage in distributed systems. Second International IEEE Security in Storage Workshop (SISW). Washington DC, USA: October 2003
  • 7 Penney GJ, Weese J, Little JA, Desmedt P, Hill DLG, Hawkes DJ. A comparison of Similarity Measures for Use in 2D-3D Medical Image Registration. In: Medical Image Computing and Computer- Assisted Intervention (MICCAI), volume 1496 of LNCS. Cambridge, USA: October 1998. Springer; 1153-61.
  • 8 Roche A, Malandain G, Pennec X, Ayache N. The Correlation Ratio as a New Measure for Multimodal Image Registration. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1496 of LNCS. Cambridge, USA: October 1998. Springer; 1153-61.
  • 9 EDG. European Data Grid IST project. http://www.edg.org/.
  • 10 Caron E, Desprez F, Lombard F, Nicod J-M, Quinson M, Suter F. A Scalable Approach to Network Enabled Servers. Proceedings of the 8th International Euro Par Conference, volume 2400 of LNCS, Paderborn, Germany, August. 2002. Springer: Verlag; 907-10.
  • 11 Open SSL. Secured Socket Layer. http://www.openssl.org/.
  • 12 MySQL. SQL database. http://www.mysql.org/.