Methods Inf Med 2005; 44(03): 461-467
DOI: 10.1055/s-0038-1633994
Original Article
Schattauer GmbH

Sample Selection for Microarray Gene Expression Studies

D. Repsilber
1   Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Lübeck, Germany
,
L. Fink
2   Institut für Pathologie, Justus-Liebig-Universität Gießen, Gießen, Germany
,
M. Jacobsen
3   Max-Planck-Institut für Infektionsbiologie, Berlin, Germany
,
O. Bläsing
4   Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
,
A. Ziegler
1   Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Lübeck, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
06 February 2018 (online)

Summary

Objectives: The choice of biomedical samples for microarray gene expression studies is decisive for both validity and interpretability of results. We present a consistent, comprehensive framework to deal with the typical selection problems in microarray studies.

Methods: Microarray studies are designed either as case-control studies or as comparisons of parallel groups from cohort studies, since high levels of random variation in the experimental approach thwart absolute measurements of gene expression levels. Validity and results of gene expression studies heavily rely on the appropriate choice of these study groups. Therefore, the so-called principles of comparability, which are well known from both clinical and epidemiological studies, need to be applied to microarray experiments.

Results: The principles of comparability are the study-base principle, the principle of deconfounding and the principle of comparable accuracy in measurements. We explain each of these principles, show how they apply to microarray experiments, and illustrate them with examples. The examples are chosen as to represent typical stumbling blocks of microarray experimental design, and to exemplify the benefits of implementing the principles of comparability in the setting of micro-array experiments.

Conclusions: Microarray studies are closely related to classical study designs and therefore have to obey the same principles of comparability as these. Their validity should not be compromised by selection, confounding or information bias. The so-called study-base principle, calling for comparability and thorough definition of the compared cell populations, is the key principle for the choice of biomedical samples and controls in microarray studies.

 
  • References

  • 1 Bakay M, Chen Y-W. Borup R, Zhao P, Nagaraju K, Hoffman E. Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinform 2002; 3: 4
  • 2 Schulz K, Grimes DA. Case-control studies: research in reverse. Lancet 2002; 359: 431-4.
  • 3 Wacholder S, McLaughlin JK, Silverman DT, Mandel JS. Selection of controls in case-control studies. I. Principles. Am J Epidemiol 1992; 135 (09) 1019-28.
  • 4 Fink L, Kohlhoff S, Stein MM, Hänze J, Weissmann N, Rose F, Akkayagil E, Manz D, Grimminger F, Seeger W, Bohle RM. cDNA Array Hybridization after Laser-Assisted Microdissection from Nonneoplastic Tissue. Am J Pathol 2002; 160 (01) 81-90.
  • 5 Cooper S, Shedden K. Microarray analysis of gene expression during the cell cycle. Cell Chrom 2003; 2: 1
  • 6 Weinberg CR. Towards a clearer definition of confounding. Am J Epidemiol 1993; 137: 1-8.
  • 7 Breiman L. Statistical Modeling: The Two Cultures. Stat Sci 2001; 16 (03) 199-231.
  • 8 Hilborn R, Mangel M. The Ecological Detective: Confronting Models with Data. Princeton: University Press; 1997
  • 9 Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller L A, Rhee S Y, Stitt M. Plant J. 2004; 37: 914-39.
  • 10 Quackenbush J. Computational Analysis of Microarray data. Nat Rev Genet 2001; 2: 418-26.
  • 11 Quackenbush J. Microarray data normalization and transformation. Nat Genet Suppl 2001; 32: 496-501.
  • 12 Simon RM, Korn EL, McShane LM, Radmacher MD, Wright GW, Zhao Y. Design and Analysis of DNA Microarray Investigations. Heidelberg: Springer; 2003
  • 13 Schena M. Microarray Analysis. Heidelberg: Springer; 2003
  • 14 Boes T, Neuhäuser M. Normalization for Affymetrix Gene Chips. Methods Inf Med 2005; 44: 414-7. (this issue)
  • 15 Ittrich C. Normalization for Two-channel Microarray Data. Methods Inf Med 2005; 44: 418-22. (this issue)
  • 16 Bretz F, Landgrebe J, Brunner E. Design and Analysis of Two-color Microarray Experiments Using Linear Models. Meth Inf Med 2005; 44: 423-30. (this issue)
  • 17 Repsilber D, Fink L, Jacobsen M, Bläsing O, Ziegler A. Sample Selection for Microarray Studies. Methods Inf Med 2005; 44: 461-7. (this issue)
  • 18 The Tumor Analysis Best Practices Working Group. Expression profiling – best practices for data generation and interpretation in clinical trials. Nat Rev Genet 2004; 5 (03) 229-37.
  • 19 King H C, Sinha A A. Gene Expression Profile Analysis by DNA Microarrays – Promise and Pitfalls. JAMA 2001; 286: 2280-8.
  • 20 Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM. Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves. Plant Physiol 2004; 136: 2687-99.
  • 21 Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S. NASCArrays: A repository for Microarray Data generated by NASC’s Transcriptomics Service. Nucleic Acids Res 2004; 32: D575-D577. http://affymetrix.arabidopsis.info/