RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00035037.xml
Methods Inf Med 2001; 40(03): 241-247
DOI: 10.1055/s-0038-1634160
DOI: 10.1055/s-0038-1634160
Original Article
Nonparametric Frontier Model as a Tool for Exploratory Analysis of Hospital Stays
Weitere Informationen
Publikationsverlauf
Publikationsdatum:
07. Februar 2018 (online)
Abstract:
Diagnosis-related groups (DRG) were introduced in 1995 to the Belgian hospital financing system. Trimming rules are generally used when mean length of stay (LOS) is estimated by DRG. This paper proposes the use of frontier models instead of trimming rules. These models allow to take into account the characteristics of the patients, to rank hospital stays, and to indicate stays presenting discrepancy between the patient’s characteristics and the resources consumed. The analysis is done with the nonparametric Free Disposal Hull (FDH) model and the method developed by Wilson to detect extreme observations, when defining the frontier is adapted to analyze large databases.
-
REFERENCES
- 1 Fetter R, Shin Y, Freeman JL. et al. Case-mix definition by Diagnosis Related Groups. Med Care 1980; 18: 53.
- 2 Marazzi A, Paccaud F, Ruffieux C. et al. Fitting the distribution of length of stay by parametric models. Med Care 1998; 36: 915-27.
- 3 Clement J, Grosskopf S, Valdmanis V. A comparison of shadow prices and reimbursement rates of hospital services. Ann Op Res 1996; 67: 163-82.
- 4 Grosskopf S, Valdmanis V. Measuring hospital performance. A non-parametric approach. Journal of Health Economics 1987; 6: 89-107.
- 5 Grosskopf S, Maragaritis D, Valdmanis V. Comparing teaching and non teaching hospitals: a frontier approach. Working paper. 1997
- 6 Linna M, Häkkinen U, Linnakko E. An econometric study of costs of teaching and research in Finnish hospitals. Health Econ 1998; 7: 291-305.
- 7 Morey R, Ozcan Y, Retzlaff-Roberts D. et al. Estimating the hospital-wide cost differentials warranted for teaching hospitals. Med Care 1995; 33: 531-52.
- 8 Zuckerman S, Hadley J, Iezzoni L. Measuring hospital efficiency with frontier cost functions. Journal of Health Economics 1994; 13: 255-80.
- 9 Chilingerian J. Evaluating physician efficiency in hospitals: a multivariate analysis of best practices. European Journal of Operational Research 1995; 80: 548-74.
- 10 Kooreman P. Nursing home care in the Netherlands: a non parametric efficiency analysis. Journal of Health Economics 1994; 13: 301-16.
- 11 Puig-Junoy J. Technical efficiency in the clinical management of critically ill patients. Health Econ 1998; 7: 263-77.
- 12 Sexton T, Leiken A, Nolan A. et al. Evaluating managerial efficiency of veterans administration medical centers using data envelopment analysis. Med Care 1989; 27: 1175-88.
- 13 Thanassoulis E, Boussofiane A, Dyson R. Exploring output quality targets in the provision of perinatal care in England using data envelopment analysis. European Journal of Operational Research 1995; 80: 588-607.
- 14 Vitaliano D, Toren M. Cost and efficiency in nursing homes: a stochastic frontier approach. Journal of Health Economics 1994; 13: 281-300.
- 15 Deprins D, Simar L, Tulkens H. ‘Measuring labor inefficiency in post offices’. in Marchand M, Pestieau P, and Tulkens H. (eds). The Performance of Public Enterprises: Concepts and Measurements . North-Holland, Amsterdam: 1984
- 16 Resti A. Evaluating the cost-efficiency of the Italian Banking System: What can be learned from the joint application of parametric and non-parametric techniques. Journal of Banking and Finance 1997; 21: 221-50.
- 17 Wilson P. Detecting influential observations in data envelopment analysis. The Journal of Productivity Analysis 1995; 6: 27-45.
- 18 Farrell MJ. The measurement of productive efficiency. Journal of the Royal Statistical Society A 1957; 120: 253-81.
- 19 Deprins D, Simar L. Estimating technical inefficiencies with correction for environmental conditions, with an application to railways companies. Annals of Public and Cooperative Economics 1989; 60: 81-102.
- 20 Deprins D, Simar L. Estimation des frontières déterministes avec facteurs exogènes d’inefficacité. Annales d’Economie et de Statistique 1989; 14: 117-50.
- 21 Simar L. Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-paramtric and semi-parametric methods with bootstrapping. The Journal of Productivity Analysis 1992; 3: 171-203.
- 22 Simar L, Wilson P. Sensitivity analysis of efficiency scores: how to bootstrap in nonpara-metric frontier models. Management Science 1998; 44: 49-61.
- 23 Simar L, Wilson P. Statistical inference in nonparametric frontier models: the state of the art. Discussion paper 9904, Institut de Statistique, Université Catholique de Lou-vain, Louvain-la-Neuve, Belgium: 1999. forthcoming in Journal of Productivity Analysis.
- 24 Andersen P, Petersen NC. A procedure for ranking efficient units in data envelopement analysis. Unpublished working paper, Department of Managment, Odense University; Denmark: 1989
- 25 Lovell C, Walters L, Wood L. Stratified models of education production using DEA and regression analysis. In Data Envelopment Analysis: Theory, Methods and Applications . Charnes A, Cooper W, Lewinand A, Seiford L. eds. New York: Quorom Books; 1993
- 26 Burgess J, Wilson P. Decomposing hospital productivity changes 1985-1988: a non parametric malmquist approach. The Journal of Productivity Analysis. 1995