Subscribe to RSS
DOI: 10.1055/s-0038-1634307
Medical Informatics: Searching for Underlying Components
Publication History
Publication Date:
07 February 2018 (online)
Abstract
Objective: To discuss unifying principles that can provide a theory for the diverse aspects of work in medical informatics. If medical informatics is to have academic credibility, it must articulate a clear theory that is distinct from that of computer science or of other related areas of study.
Results: The notions of reusable domain ontologies and problem-solving methods provide the foundation for current work on second-generation knowledge-based systems. These abstractions are also attractive for defining the core contributions of basic research in informatics. We can understand many central activities within informatics in terms defining, refining, applying, and evaluating domain ontologies and problem-solving methods.
Conclusion: Construing work in medical informatics in terms of actions involving ontologies and problem-solving methods may move us closer to a theoretical basis for our field.
-
References
- 1 Kohn LT, Corrigan JM, Donaldson MS. (eds.). To Err Is Human: Building a Safer Health System. Washington: National Academy Press; 2000
- 2 Shortliffe EH, Perreault LE, Wiederhold G, Fagan LM. (eds.). Medical Informatics: Computer Applications in Health Care and Biomedicine, 2nd Edition. New York: Springer-Verlag; 2001
- 3 van Bemmel JH, Musen MA. (eds.). Handbook of Medical Informatics. Heidelberg: Springer-Verlag; 1997
- 4 David J-M, Krivine J-P, Simmons R. (eds.). Second Generation Expert Systems. Berlin: Springer-Verlag; 1993
- 5 Kuperman GJ, Gardner RM, Pryor TA. HELP: A Dynamic Hospital Information System. New York: Springer-Verlag; 1991
- 6 Barnett GO, Justice NS, Somand ME, Barclay Adams J, Waxman BD, Beaman PD, Parent MS, Van Deusen FR, Greelie JK. COSTAR system. Proceedings of the IEEE 1979; 67 (Suppl. 09) 1226-37.
- 7 Friedman CP, (organizer and moderator). Frisse ME, Musen MA, Slack WV, Stead WW. (participants). How should we organize to do informatics? Report of the ACMI debate at the 1997 AMIA Fall Symposium. J Am Med Inform Assoc 1998; 5: 293-304.
- 8 Safran C, Slack WV, Bleich HL. Role of computing in patient care in two hospitals. M.D. Computing 1989; 6 (Suppl. 03) 141-8.
- 9 Blois MS. Information and Medicine. Berkeley: The University of California Press; 1984
- 10 Patil RS, Szolovits P, Schwartz WB. Causal understanding of patient illness in medical diagnosis. In: Proceedings of the Seventh International Joint Conference on Artificial Intelligence. Vancouver; British Columbia: 1981: 893-9.
- 11 Schreiber AT, Akkermans JM, Anjewierden AA, De Hoog R, Shadbolt NR, Van de Velde W, Wielinga BJ. Knowledge Engineering and Management: The CommonKADS Methodology. Cambridge, MA: The MIT Press; 2000
- 12 Blois MS. Clinical judgment and computers. N Engl J Med 1980; 303 (Suppl. 04) 192-7.
- 13 Clancey WR, Shortliffe EH. Readings in Medical Artificial Intelligence: The First Decade. Reading, Massachusetts: Addison Wesley; 1984
- 14 Musen MA. Scalable software architectures for decision support. Methods Inf Med 1999; 38: 229-38.
- 15 Chandrasekaran B, Josephson JR, Benjamins VR. What are ontologies, and why do we need them?. IEEE Intelligent Systems 1999; 14 (Suppl. 01) 20-6.
- 16 Chadrasekaran B, Johnson TR, Smith JW. Task-structure analysis for knowledge modeling.
- 17 Gennari JH, Tu SW, Rothenfluh TE, Musen MA. Mapping domains to methods in support of reuse. Int J Hum Comput Stud 1994; 41: 399-424.
- 18 Noy FN, Sintek M, Decker S, Crubézy M, Fergerson RW, Musen MA. Creating Semantic Web contents with Protégé-2000. IEEE Intelligent Systems 2001; 16 (Suppl. 02) 60-71.
- 19 Musen MA, Tu SW, Das AK, Shahar Y. EON: A component – based approach to automation of protocol-directed therapy. J Am Med Inform Assoc 1996; 3: 367-88.
- 20 Musen MA. Domain ontologies in software engineering: Use of Protégé with the EON architecture. Methods Inf Med 1998; 37: 540-50.
- 21 Wirth N. Algorithms + Data Structures = Programs. Englewood Cliffs, New Jersey: Prentice-Hall; 1976
- 22 Musen MA, Wieckert KE, Miller ET, Campbell KE, Fagan LM. Development of a controlled medical terminology: Knowledge acquisition and knowledge representation. Methods Inf Med 1995; 34: 85-95.
- 23 Kuhn KA, Giuse DA. From hospital information systems to health information systems – problems, challenges, perspectives. Methods Inf Med 2001; 40: 275-87.
- 24 Sittig D. Top 10 accomplishments in biomedical informatics. Electronic mail posting to acmidiscussion@mail.amia.org September 24 2000
- 25 Rosse CR, Mejino JL, Modayur BR, Jakobovits R, Hinshaw KP, Brinkley JF. Motivation and organizational principles for anatomical knowledge representation: The Digital Anatomist symbolic knowledge base. J Am Med Inform Assoc 1998; 5: 17-40.
- 26 The gene ontology consortium.. Gene ontology: tool for the unification of biology. Nat Genet 2000; 1: 25-9.
- 27 Musen MA. Design and use of clinical ontologies: Curricular goals for the education of health-telematics professionals. In: User Acceptance of Health Telematics Applications: Education and Training in Health Telematics. Iakovidis I, Maglavera S, Trakatellis A. (eds.). Amsterdam: IOS Press; 2000: 40-7.
- 28 Friedman CP. Where’s the science in medical informatics?. J Am Med Inform Assoc 1995; 2: 65-7.