Methods Inf Med 2003; 42(03): 277-281
DOI: 10.1055/s-0038-1634361
Original article
Schattauer GmbH

The Laryngectomee Substitute Voice: Image Processing of Endoscopic Recordings by Fusion with Acoustic Signals

J. Lohscheller
1   Department of Phoniatrics and Pediatric Audiology, University of Erlangen-Nuremberg, Erlangen, Germany
,
M. Döllinger
1   Department of Phoniatrics and Pediatric Audiology, University of Erlangen-Nuremberg, Erlangen, Germany
,
M. Schuster
1   Department of Phoniatrics and Pediatric Audiology, University of Erlangen-Nuremberg, Erlangen, Germany
,
U. Eysholdt
1   Department of Phoniatrics and Pediatric Audiology, University of Erlangen-Nuremberg, Erlangen, Germany
,
U. Hoppe
1   Department of Phoniatrics and Pediatric Audiology, University of Erlangen-Nuremberg, Erlangen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 04. Juni 2002

Accepted 17. Dezember 2002

Publikationsdatum:
07. Februar 2018 (online)

Summary

Objectives: The most radical cancer therapy of the throat is the total excision of the larynx which postoperatively results in the loss of voice. A widely-used method of voice rehabilitation is the insertion of a silicone valve, which establishes an unidirectional connection between trachea and esophagus. Thus, during exhalation, air can be directed from the trachea into the esophagus. This air stream excites tissue vibrations of the esophagus and the hypo-pharynx which act as a substitute voice generator. Purpose of the current study is to present a technique for visualizing the dynamics of the substitute voice generating element.

Methods: Digital high speed videos of the vibrating tissue are simultaneously recorded with the emitted acoustic signal. The high speed sequences are directly evaluated by a three-step knowledge based algorithm. It considers correlation between image and acoustic data, information about the gray value of each pixel, and continuity of tissue vibration. The temporal properties of an image series are investigated by evaluating the time dependent gray value at each pixel position.

Results: The applicability of the algorithm is exemplar-ily demonstrated using the data of one male patient. It enables the identification of the regions within an image series which are mainly responsible for the acoustic signal. Additionally, the dynamics of tissue vibrations are visualized. The main propagation direction can be clearly identified.

Conclusions: The new methodology summarizes the information about endoscopic and acoustic recordings of substitute voice into a single image. The results allow a first estimation of tissue velocity and elastic properties of oscillating tissue.

 
  • References

  • 1 Hoppe U. Mechanisms of Hoarseness – Visualization and Interpretation by Means of Nonlinear Dynamics . Kommunikationsstörungen – Berichte aus der Phoniatrie und Pädaudiologie. Aachen: Shaker; 2001
  • 2 Ruben RJ. Redefining the survival of the fittest: Communication disorder in the 21st century. Laryngoscope 2000; 110: 241-5.
  • 3 Hilgers FJM, Ackerstaff AH. Comprehensive Rehabilitation after Laryngectomy is More than Voice Alone. Folia Phoniatr Logop 2000; 52: 65-73.
  • 4 Blom ED. Tracheoesophageal Voice Restoration: Origin – Evolution – State-of-the-Art. Folia Phoniatr Logop 2000; 52: 14-23.
  • 5 Schutte HK, Nieboer GJ. Aerodynamics of Esophageal Voice Production with and without a Groningen Voice Prosthesis. Folia Phoniatr Logop 2002; 54: 8-18.
  • 6 de Vries MP, Van der Plaats A, Van der Torn M, Mahieu HF, Schutte HK, Verkerke GJ.
  • 7 Wittenberg T, Frischholz R, Ernst J, van As C, Hilger F, Tigges M, Eysholdt U. Rechnergestütze Bewegungsanalyse der Pharyngoösophagealen Schleimhaut nach Laryngektomie. Aktuelle phoniatrisch-pädaudiologische Aspekte, Heidelberg: Median Verlag; 1999: 134-8.
  • 8 Eysholdt U, Tigges M, Wittenberg T, Pröschel U. Direct Evaluation of High-Speed Recordings of Vocal Fold Vibration. Folia Phoniatr Logop 1996; 48: 163-170.
  • 9 van As CJ, Tigges M, Wittenberg T, Op de Coul BMR, Eysholdt U, Hilgers FJM. High-Speed Digital Imaging of Neoglottic Vibration after Total Larngectomy. Arch Otolaryngol Head Neck Surg 1999; 125: 891-7.
  • 10 Wittenberg T, Moser M, Tigges M, Eysholdt U. Recording, processing, and analysis of digital high-speed sequences in glottography. Mach Vision Appl 1995; 8: 399-404.
  • 11 Hilgers FJM, Ackerstaff AH, Balm AJM, Tan IB, Aaronson NK, Persson JO. Development and clinical evaluation of a second-generation voice prosthesis (Provox(R)2), designed for anterograde and retrograde insertion. Acta OtoLaryngol 1997; 117: 889-96.
  • 12 Van As C, Tigges M, Hilgers F, Eysholdt U. Oesophageal Vibration in Voice Rehabilitation after Laryngectomy. Advances in Quantitative Laryngoscopy, Verlag Abt.; Phoniatrie: 1997: 95-102.
  • 13 Pützer M. Multiparametrische Stimmqualitätserfassung männlicher und weiblicher Normal-stimmen. Folia Phoniatr Logop 2001; 53: 73-84.
  • 14 Ng ML, Gilbert HR, Lerman JW. Fundamental Frequency, Intensity, and Vowel Duration Characteristics Related to Perception of Cantonese Alaryngeal Speech. Folia Phoniatr Logop 2001; 53: 36-47.
  • 15 Lüke HD. Signalübertragung: Grundlagen der digitalen und analogen Nachrichtenübertragungssysteme (7th ed). Springer: 1999: 92-101.
  • 16 Tigges M, van As C, Wittenberg T, Hilgers F, Eysholdt U. Direkte Beobachtung der tacheoösophagealen Phonation bei 46 Laryngektomierten. Aktuelle phoniatrisch-pädaudiologische Aspekte, Heidelberg: Median Verlag; 1999: 131-3.
  • 17 Döllinger M, Hoppe U, Hettlich F, Lohscheller J, Schuberth S, Eysholdt U. Vocal Fold Parameter Extraction Using The Two-Mass-Model. IEEE T Bio-Med Eng 2002; 49 (Suppl. 08) 773-81.