Methods Inf Med 2002; 41(04): 349-356
DOI: 10.1055/s-0038-1634393
Original article
Schattauer GmbH

Two-Phase Study to Assess the Number of Cases Based on Claims Databases: Characteristics of the Validation Data Set

C. M. Couris
1   Department of Medical Information, Hospices Civils de Lyon, France
,
M. Rabilloud
2   Unit of biostatistiques, Hospices Civils de Lyon, France
,
C. Colin
1   Department of Medical Information, Hospices Civils de Lyon, France
,
R. Ecochard
2   Unit of biostatistiques, Hospices Civils de Lyon, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 06. September 2001

Accepted 04. März 2002

Publikationsdatum:
07. Februar 2018 (online)

Summary

Objective: In a two-phase study design, the characteristics of an external data set were studied for precision and bias of the number of incident or prevalent cases of a disease obtained from claims databases.

Methods: In the study population (first phase), incident or prevalent cases were counted whereas external data (second phase) provided sensitivity and specificity estimates to count cases in a claims database. Influence of potential differences in sensitivity and specificity between the two phases were evaluated. This was illustrated for 50-90% sensitivity and 99-99.99% specificity ranges.

Results and Conclusions: The impact of differences in sensitivity and specificity depends on the odds of disease in the study population. We provide advice on the choice of adequate data sets to correct claims database estimates.

 
  • References

  • 1 Connell FA, Diehr P, Hart LG. The use of large data bases in health care studies. Annu Rev Public Health 1987; 8: 51-74.
  • 2 Dussaucy A, Viel JF, Mulin B, Euvrard J. The framework Prospective Payment Information Systems: bias, sources of errors and consequences. Rev Epidemiol Sante Publique 1994; 42 (Suppl. 04) 345-58.
  • 3 Fourquet F, Demont F. Utilisation du PMSI en épidémiologie. Technologie Santé 1999; 39: 55-64.
  • 4 Greenland S, Robins JM. Confounding and misclassification. Am J Epidemiol 1985; 122 (Suppl. 03) 495-506.
  • 5 Lombrail P, Minvielle E, Comar L, Gottot S. Prospective Payment Information Systems and epidemiology: a difficult link to establish. Rev Epidemiol Sante Publique 1994; 42 (Suppl. 04) 334-44.
  • 6 Solin LJ, Legorreta A, Schultz DJ, Levin HA, Zatz S, Goodman RL. Analysis of a claims database for the identification of patients with carcinoma of the breast. J Med Syst 1994; 18 (Suppl. 01) 23-32.
  • 7 Cooper GS, Yuan Z, Stange KC, Dennis LK, Amini SB, Rimm AA. The sensitivity of Medicare claims data for case ascertainment of six common cancers. Med Care 1999; 37 (Suppl. 05) 436-44.
  • 8 Warren JL, Feuer E, Potosky AL, Riley GF, Lynch CF. Use of Medicare hospital and physician data to assess breast cancer incidence. Med Care 1999; 37 (Suppl. 05) 445-56.
  • 9 Fisher ES, Baron JA, Malenka DJ, Barrett J, Bubolz TA. Overcoming potential pitfalls in the use of Medicare data for epidemiologic research. Am J Public Health 1990; 80 (Suppl. 12) 1487-90.
  • 10 Quam L, Ellis LB, Venus P, Clouse J, Taylor CG, Leatherman S. Using claims data for epidemiologic research. The concordance of claims-based criteria with the medical record and patient survey for identifying a hypertensive population. Med Care 1993; 31 (Suppl. 06) 498-507.
  • 11 Bashir SA, Duffy SW. The correction of risk estimates for measurement error. Ann Epidemiol 1997; 7 (Suppl. 02) 154-64.
  • 12 Carroll RJ, Ruppert D, Stefanski LA. Measurement error in nonlinear models. London: Chapman & Hall; 1995
  • 13 Borella L, Peuvrel P, Sauvage M, Maraninchi D, Philip T. A study based on national DRG data to evaluate work load and practice relating to cancer patients in not-for-profit hospitals. Rev Epidemiol Sante Publique 2000; 48 (Suppl. 01) 53-70.
  • 14 Direction générale de la santé, Direction des Hôpitaux. Circulaire DGS/DH/AFS n°98-213 du 24 mars 1998 relative à l’organisation des soins en cancérologie dans les établissements d’hospitalisation publics et privés.
  • 15 Gao S, Hui SL, Hall KS, Hendrie HC. Estimating disease prevalence from two-phase surveys with non-response at the second phase. Stat Med 2000; 19 (Suppl. 16) 2101-14.
  • 16 Couris CM, Colin C, Rabilloud M, Schott A, Ecochard R. Method of correction to assess the number of hospitalized incident breast cancer cases based on claims databases. J Clin Epidemiol 2002; 55 (Suppl. 04) 386-91.