Methods Inf Med 1998; 37(04/05): 384-393
DOI: 10.1055/s-0038-1634559
Original Article
Schattauer GmbH

From Text to Knowledge: a Unifying Document-Centered View of Analyzed Medical Language

P. Zweigenbaum
1   Service d'informatique médicale, Assistance Publique, Hôpitaux de Paris & Département de biomathèmatiques, Université Paris 6
,
J. Bouaud
1   Service d'informatique médicale, Assistance Publique, Hôpitaux de Paris & Département de biomathèmatiques, Université Paris 6
,
B. Bachimont
1   Service d'informatique médicale, Assistance Publique, Hôpitaux de Paris & Département de biomathèmatiques, Université Paris 6
,
J. Charlet
1   Service d'informatique médicale, Assistance Publique, Hôpitaux de Paris & Département de biomathèmatiques, Université Paris 6
,
B. Séroussi
1   Service d'informatique médicale, Assistance Publique, Hôpitaux de Paris & Département de biomathèmatiques, Université Paris 6
,
J.-F. Boisvieux
1   Service d'informatique médicale, Assistance Publique, Hôpitaux de Paris & Département de biomathèmatiques, Université Paris 6
› Author Affiliations
Further Information

Publication History

Publication Date:
15 February 2018 (online)

Abstract

Although medical language processing (MLP) has achieved some success, the actual use and dissemination of data extracted from free text by MLP systems is still very limited. We claim that the adoption of an ‘enricheddocument’ paradigm (or ‘document-centered’ view) can help to address this issue. We present this paradigm and explain how it can be implemented, then discuss its expected benefits both for end-users and MLP researchers.

 
  • REFERENCES

  • 1 Sager N, Lyman M, Bucknall C, Nhan NT, Tick LJ. Natural language processing and the representation of clinical data. Journal of the American Medical Informatics Association 1994; 1 (2) 142-60.
  • 2 Gundersen ML, Haug PJ, Pryor TA. et al. Development and evaluation of a computerized admission diagnoses encoding system. Compia and Biomed Res 1996; 29 (1/2) 351-72.
  • 3 Department of Health and Human Services, Washington. International Classification of Diseases, Clinical Modifications, 9th revision. 1980
  • 4 Côté RA, Rothwell DJ, Palotay JL, Beckett RS, Brochu L. (eds.) The Systematised Nomenclature of Human and Veterinary Medicine: SNOMED International. College of American Pathologists; Northfield: 1993
  • 5 Oliver DE, Altman RB. Extraction of SNOMED concepts from medical record texts. In: Proceedings of the 18lh Annual SCAMC, Washington. Me Graw Hill; 1994: 179-83.
  • 6 Sager N, Nhan NT, Lyman M, Tick LJ. Medical language processing with SGML display. In: Cimino; [43], October 1996: 547-51.
  • 7 Zingmond D, Lenert LA. Monitoring freetext data using medical language processing. Comput and Biomed Res 1993; 26: 467-81.
  • 8 Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB. A general natural-language text processor for clinical radiology. Journal of the American Medical Informatics Association 1994; 1 (2) 161-74.
  • 9 Rector AL, Nowlan WA, Kay S. Conceptual knowledge: the core of medical information systems. In: Lun KC, Degoulet P, Piemme T, Rienhoff O. eds. Proc MEDINFO 92, Geneva. North Holland; 1992: 1420-6.
  • 10 Zweigenbaum P, Consortium Menelas. Menelas: an access system for medical records using natural language. Comput Methods Programs Biomed 1994; 45: 117-20.
  • 11 Nygren E, Henriksson P. Reading the medical record. I. Analysis of physicians ways of reading the medical record. Comput Methods Programs Biomed 1992; 39: 1-2.
  • 12 Séroussi B, Baud R, Moens M. et al. DOME final report. DOME (EU Project MLAP-63221) Deliverable D0.2, DIAM, SIM/ AP-HP. 1996
  • 13 Nygren E, Johnson M, Henriksson P. Reading the medical record. II. Design of a human-computer interface for basic reading of computerized medical records. Comput Methods Programs Biomed 1992; 39: 13-25.
  • 14 Adelhard K, Eckel R, Hôlzel D, Tretter W. A prototype of a computerized patient record. Comput Methods Programs Biomed 1995; 48: 115-9.
  • 15 Bouaud J, Séroussi B. Navigating through a document-centered computer-based patient record: a mock-up based on WWW technology. In: Cimino; [43], October 1996
  • 16 Carvalho GA. Modélisation documentaire du dossier patient : une expérience. Rapport de DEA, Informatique Biomédicale. Université Paris 5; 1996
  • 17 Laforest F, Frènot S, Flory A. A new approach for hypermedia medical records management. In: Brender J, Christensen JP, Scherrer JR, McNair P. eds. Proceedings of MIE'96, Copenhagen, DK. IOS Press; 1996: 1042-6.
  • 18 Bachimont B, Charlet J. Hospitexte: station de consultation pour un dossier patient dématérialisé. Technical Report 96-170, Département Intelligence Artificielle et Médecine – SIM/AP-HP, 91, bd de l'Hôpital, 75634 Paris cedex 13. France: 1996
  • 19 Armstrong S. Using Large Corpora. MIT Press; 1994. Reprinted from Computational Linguistics, 19 (1/2), 1993.
  • 20 Lehnert W, Sundheim B. A performance evaluation of text-analysis technologies. The Artificial Intelligence Magazine 1991; (Fall) 81-94.
  • 21 Brill E. Transformation-based error-driven learning and natural language processing: A case study in part-of-speech lagging. Computational Linguistics 1995; 21 (4) 543-65.
  • 22 Basili R, Pazienza MT, Velardi P. What can be learned from raw texts?. Machine Translation 1993; 8: 147-73.
  • 23 ISO. Standard generalized markup language. ISO 8879, International Organization for Standardization, 1 rue de Varembé, C. P. 56, CH-1211. Genève: 1986
  • 24 Goldfarb CF. The SGML handbook. Oxford University Press; 1990
  • 25 Sperberg-McQueen CM, Burnard L. eds. Guidelines for Electronic Text Encoding and Interchange (TEI P3). Chicago, Oxford: 1994. ACH, ACL and ALLC.
  • 26 Alschuler L, Lincoln TL, Spinosa J. Medicine for SGML. In: Proceedings GCA SGML'96. 1996: 181-9.
  • 27 Kay M. Algorithm schemata and data structure in syntactic processing. In: Grosz BJ, Jones KS, Webber BL. eds. Readings in Natural Language Processing. Morgan Kaufmann, Los Altos, Ca: 1986: 35-70.
  • 28 Nii HP. Blackboard systems: the blackboard model of problem solving and the evolution of blackboard architectures. The Artificial Intelligence Magazine 1986; 7 (2, 3) 38-53 82-106.
  • 29 de Kleer J. An assumption-based truth maintenance system. Artificial Intelligence 1986; 28: 1.
  • 30 Langendoen DT, Simons GF. A rationale for the TEI recommendations for feature- structure markup. In: Ide and Veronis [44]. 1995: 191-209.
  • 31 Baud RH, Rassinoux AM, Wagner JC. et al. Representing clinical narratives by Sowa's Conceptual Graphs. Meth Inform Med 1995; 34 (1/2) 176-86.
  • 32 DeRose SJ, Durand DG. Making Hypermedia Work – A User's Guide to HyTime. Kluwer Academic Publishers; 1994
  • 33 SoftQuad, Inc., Toronto. Panorama Pro for Microsoft Windows. 1995
  • 34 Veronis J. MULTEXT home page. WWW page http://www.lpl.univ-aix.fr/projects/multext/ CNRS et Université de Provence 1996
  • 35 ISO. Document style semantics and specification language. ISO/IEC 10179, International Organization for Standardization, 1 rue de Varembé, C. P. 56, CH-1211. Genève: 1995. See also [45]
  • 36 Bachimont B. Intelligence artificielle et écriture dynamique: de la raison graphique à la raison computationnelle. In: Colloque de Cerisy La Salle ‘Au nom du sens’ autour de et avec Umberto Eco. Grasset, Paris: 1996. To appear.
  • 37 Natural Language Software Registry. The natural language software registry online research server. WWW page http://cl-www.dfki.uni-sb.de/cl/registry/draft.html 1996
  • 38 European Language Resources Association. ELRA home page. WWW page http://www.icp.grenet.fr/ELRAL/home.html 1996
  • 39 Friedman C, Hripcsak G. Evaluating natural language processors in the clinical domain. Meth Infor Med 1998; 37: 334-44.
  • 40 Giordano R. The TEI header and the documentation of electronic texts. In: Ide and Véronis [44]. 1995: 75-84.
  • 41 Cimino JJ, Socratous SA, Grewal R. The informatics superhighway: Prototyping on the World Wide Web. In: Gardner RM. ed. Proceedings of the 19th Annual SCAMC. New Orleans. AMIA: 1995: 111-5 JAMIA supplement.
  • 42 Humphrey BL, Lindberg DAB. Building the Unified Medical Language System. In: Proceedings of the 13,h Ajinual SCAMC. Washington: IEEE; 1989: 475-80.
  • 43 Cimino JJ. ed. Proceedings of AMIA Annual Fall Symposium 96. Washington DC: October 1996. JAMIA supplement.
  • 44 Ide N, Véronis J. eds. The Text Encoding Initiative. Kluwer Academic Publishers, Boston, 1995; Reprinted from Computers and the Humanities 29 1995
  • 45 Clark J. ISO/IEC DIS 10179.2: Document style semantics and specification language (DSSSL). WWW page http://www.jclark.com/dsss 1995