Methods Inf Med 1995; 34(05): 498-502
DOI: 10.1055/s-0038-1634630
Original Article
Schattauer GmbH

Utilization of a Neural Network in the Elaboration of an Evaluation Scale for Pain in Cerebral Palsy

B. Giusiano
1   Laboratoire d’Informatique Mécticale, Faculté de Médecine, Marseille, France
2   Service de l’Information Mécticale, Hôpital d’Enfants de la Timone, Marseille, France
,
M. T. Jimeno
2   Service de l’Information Mécticale, Hôpital d’Enfants de la Timone, Marseille, France
,
P. Collignon
3   Hôpital San Salvadour (AP-HP), Hyères, France
,
Y. Chau
1   Laboratoire d’Informatique Mécticale, Faculté de Médecine, Marseille, France
› Author Affiliations
Further Information

Publication History

Publication Date:
17 February 2018 (online)

Abstract:

An interesting aspect of neural networks is shown in the elaboration of an evaluation scale for pain in cerebral palsy with severe mental retardation. Because of the diversity of cases, the number of items had to be limited in the final step of statistical validation. Classical analysis on prior data did not allow to decide whether the variability in results is more likely due to the type of disability (i. e., the possibility of pain expression) than to the actual presence of pain. A neural network was used to find implicit relations between the data, with the advantage of having total control on the variables’ status by applying variations in the network architecture. This allowed for the rapid identification more significant item combinations as a function of degree of relationship to pain in cerebral palsy.

 
  • References

  • 1 CTNERHI. Les Multihandicapés. Enfants Atteints de Handicaps Associés. Report of a study group. Paris: PUF; 1985
  • 2 Mette F, Abittan J. L’équipe de rééducation: essai d’évaluation de la douleur chez le polyhandicapé. Annales de Kinesitherapie 1988; 15: 101-4.
  • 3 Gauvain-Piquard A, Rodary C, Revzani A, Lemerle J. Pain in children of 2 to 6 years: a new observational rating scale elaborated in a paediatric oncology unit. Pain 1987; 31: 177-88.
  • 4 Collignon P, Giusiano B, Jimeno MT, Combe JC, Thirion X, Porsmoguer E. Une échelle d’hétéroévaluation de la douleur chez renfant polyhandicapé. In: Gauvin-Piquard A, Murat I, Pons G. eds. La Douleur chez l’Enfant: Echelles d’Évaluation, Traitements Médicamenteux. Col. Recherche Clinique et Decision Therapeutique. Paris: Springer-Verlag; 1993: 11-20.
  • 5 Saporta G. Probabilités, Analyse des Donneés et Statistiques. Paris: Ed. Technip; 1990
  • 6 McClelland J, Rumelhart D. Parallel Distribwed Processing. Explorations in the Microstructure of Cognition. Cambridge: MIT Press; 1989
  • 7 Zeidenberg M. Neural Networks in Artificial Intelligence. Chichester: Ellis Horwood; 1991
  • 8 Waschulzik T, Quandt K, Lewis M, Hormann A, Engelbrecht R, Brauer W. Evaluation of an epidemiological data set as an example of the application of neural networks to the analysis of large medical data sets. In: Andreassen A. et al., eds. Artificial Intelligence in Medecine. Amsterdam: IOS Press; 1993: 466-76.
  • 9 Reggia JA. Neural computation in medicine. Artif Intell Med 1993; 5: 143-57.