Hamostaseologie 1994; 14(04): 184-189
DOI: 10.1055/s-0038-1660362
Übersichtsarbeiten/Review Articles
Schattauer GmbH

Fibrinogen-Varianten: Biochemie, Molekularbiologie und Diagnostik

Agnes H. Henschen
1   Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
26 June 2018 (online)

Zusammenfassung

Das humane Fibrinogen hat ein Molekulargewicht von 340 kD und eine Struktur, die mit (Aα, Bβ, γ)2 beschrieben werden kann. Es ist ein außerordentlich heterogenes Protein, da zahlreiche Bereiche des Moleküls während oder nach der Biosynthese modifiziert werden, die Modifikationen gewöhnlich unvollständig sind und in einzelnen Molekülen unterschiedlich kombiniert sein können. Die bis jetzt bekannten Modifikationen sind: alternative Prozessierung bei der Synthese, Phosphorylierung, Sulfatierung, Hydroxylierung, Oxidierung, Amid-AmmoniakVerlust, Glykosylierung, proteolytischer Abbau und genetischer Polymorphismus. Hieraus kann berechnet werden, daß das Fibrinogen in mehr als einer Million nichtidentischer Formen im Blut jedes Menschen vorhanden ist. Bei einigen Modifikationen ist eine Beziehung zu Erkrankungen bekannt. Zusätzliche Modifikationen entstehen durch Mutationen und führen zu Dysfibrinogenämien, die schon bei mehr als 80 Familien in ihrer Struktur aufgeklärt wurden.

 
  • LITERATUR

  • 1 Baumann RE, Henschen AH. Human fibrinogen polymorphic site analysis by restriction endonuclease digestion and allele-specific polymerase chain reaction amplification: Identification of polymorphisms at positions Aα 312 and Bβ 448. Blood 1993; 82: 2117-24.
  • 2 Baumann RE, Henschen AH. Linkage disequilibrium relationship among four polymorphisms within the human fibrinogen gene cluster. Hum Genet 1994; 94: 165-70.
  • 3 Blombäck B, Gröndahl NJ, Hessel B. et al. Primary structure of human fibrinogen and fibrin. II. Structural studies on NH2-terminal part of γ chain. J Biol Chem 1973; 248: 5806-20.
  • 4 Callea F, Tortora O, Kojima T. et al. Hypofibrinogenemia and fibrinogen, storage disease. In: Fibrinogen. Mosesson MW, Amrani D, Siebenlist KR, Diorio JP. (eds). Amsterdam: Elsevier; 1988: 247-50.
  • 5 Chen N, Henschen A. Identification of methionine sulfoxide in native and oxidized fibrinogen. Protein Sci 1994; 03 (Suppl. 01) 147.
  • 6 Chung DW, Davie EW. γ and γ’ chains of human fibrinogen are produced by alternative mRNA processing. Biochemistry 1984; 23: 4232-6.
  • 7 Chung DW, Harris JE, Davie EW. Nucleotide sequences of the three genes coding for human fibrinogen. In: Fibrinogen, Thrombosis, Coagulation and Fibrinolysis. Liu CY, Chien S. (eds). New York: Plenum; 1990: 39-48.
  • 8 Doolittle RF, Watt KWK, Cottrell BA. et al. The amino acid sequence of the a-chain of human fibrinogen. Nature 1979; 280: 464-8.
  • 9 Ebert RF. Index of variant human fibrinogens. Boca Raton: CRC Press; 1991: 1-1 5-6..
  • 10 Ernst E. Fibrinogen: An important risk factor for atherothrombotic diseases. Ann Med 1994; 26: 15-22.
  • 11 Farrell DH, Mulvihill ER, Huang S. et al. Recombinant human fibrinogen and sulfation of the γ’ chain. Biochemistry 1991; 30: 9414-20.
  • 12 Fornace AJ, Cummings DE, Comeau CM. et al. Structure of the human γ-fibrinogen gene. Alternate mRNA splicing near the 3’ end of the gene produces γA and γB forms of 7-fibrinogen. J Biol Chem 1984; 259: 12826-30.
  • 13 Fu Y, Weissbach L, Plant PW. et al. Carboxyterminal-extended variant of the human fibrinogen α subunit: A novel exon conferring marked homology to β and γ subunits. Biochemistry 1992; 31: 11968-72.
  • 14 Galanakis D, Spitzer S, Scharrer I. Unusual Aal6Arg -» Cys dysfibrinogenaemic family: absence of normal Aα-chains in fibrinogen from two of four heterozygous siblings. Blood Coag Fibrinol 1993; 04: 67-71.
  • 15 Henschen A, Edman P. Large scale preparation of S-carboxymethylated chains of human fibrin and fibrinogen and the occurrence of γ-chain variants. Biochim Biophys Acta 1972; 263: 351-67.
  • 16 Henschen A, Lottspeich F. Amino acid sequence of human fibrin. Preliminary note on the completion of the β-chain sequence. Hoppe-Seyler’s Z Physiol Chem 1977; 358: 1643-6.
  • 17 Henschen A, Lottspeich F, Hessel B. Amino acid sequence of human fibrin. Preliminary note on the completion of the intermediate part of the α-chain sequence. Hoppe-Seyler’s Z Physiol Chem 1979; 360: 1951-6.
  • 18 Henschen A, McDonagh J. Fibrinogen, fibrin and factor XIII. In: Blood Coagulation. Zwaal RFA, Hemker HC. (eds). Amsterdam: Elsevier; 1986: 171-241.
  • 19 Henschen AH, Theodor I, Pirkle H. Hydroxyproline, a posttranslational modification of proline, is a constituent of human fibrinogen. Thromb Haemost 1991; 65: 821.
  • 20 Henschen AH. Human fibrinogen Structural variants and functional sites. Thromb Haemost 1993; 70: 42-7.
  • 21 Henschen AH. On the occurrence and significance of tyrosine sulfate in fibrinogen. Blood Coag Fibrinol 1993; 04: 822.
  • 22 Holm B, Brosstad F, Kierulf P, Godai HC. Polymerization properties of two normally circulating fibrinogens, HMW and LMW. Evidence that the COOH-terminal end of the a-chain is of importance for fibrin polymerization. Thromb Res 1985; 39: 595-606.
  • 23 Humphries SE, Cook M, Dubowitz M. et al. Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet 1987; 1452-5.
  • 24 Kaiser C, Seydewitz HH, Witt I. Studies on the primary structure of the Aα chain of human fibrinogen: Clarification of hitherto uncertain amino acid residues. Thromb Res 1984; 33: 543-8.
  • 25 Kant JA, Fornace Jr AJ, Saxe D. et al. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. Proc Soc Natl Acad Sci USA 1985; 82: 2344-8.
  • 26 Kaudewitz H, Henschen A, Soria J, Soria C. Fibrinogen Pontoise A genetically abnormal fibrinogen with defective fibrin polymerisation but normal fibrinopeptide release. In: Fibrinogen. Lane DA, Henschen A, Jasani MK. (eds). Berlin: de Gruyter; 1986: 91-6.
  • 27 Köther M, Egbring R, Fuchs G, Henschen A. Bleeding and thrombotic events related to structural variants of fibrinogen. In: Fibrinogen. Mosesson MW, Amrani DL, Siebenlist KR, Diorio JP. (eds). Amsterdam: Elsevier; 1988: 333-5.
  • 28 Lottspeich F, Henschen A. Amino acid sequence of human fibrin. Preliminary note on the completion of the γ-chain sequence. Hoppe-Seyler’s Z Physiol Chem 1977; 358: 935-8.
  • 29 Martinez J, Barsigian C. Biology of disease. Carbohydrate abnormalities of N-linked plasma glycoproteins in liver disease. Lab Invest 1987; 57: 240-57.
  • 30 Müller E, Henschen A. Isolation and characterization of human plasma fibrinogen molecular-size-variants by high-performance liquid chromatography and amino acid sequence analysis. In: Fibrinogen. Mosesson MW, Amrani DL, Siebenlist KR, Diorio JP. (eds). Amsterdam: Elsevier; 1988: 279-82.
  • 31 Nakashima A, Sasaki S. Miyazaki et al. Human fibrinogen heterogeneity: The COOH-terminal residues of defective Aα chains of fibrinogen II. Blood Coag Fibrinol 1992; 03: 361-70.
  • 32 Schmelzer CH, Ebert RF, Bell WR. A polymorphism at Bβ 448 of fibrinogen identified during structural studies of Fibrinogen Baltimore II. Thromb Res 1988; 52: 173-7.
  • 33 Seydewitz HH, Kaiser C, Rothweiler H, Witt J. The location of a second in vivo phosphorylation site in the Aα-chain of human fibrinogen. Thromb Res 1984; 33: 487-98.
  • 34 Seydewitz HH, Witt I. Increased phosphorylation of human fibrinopeptide A under acute phase conditions. Thromb Res 1985; 40: 29-39.
  • 35 Stief TW. Oxidized fibrin stimulates the activation of prourokinase and is the preferential substrate of human plasmin. Blood Coag Fibrinol 1993; 04: 117-21.
  • 36 Töpfer-Petersen E, Lottspeich F, Henschen A. Carbohydrate linkage site in the β-chain of human fibrin. Hoppe-Seyler’s Z Physiol Chem 1976; 357: 1509-13.