Semin Respir Crit Care Med 2019; 40(01): 019-030
DOI: 10.1055/s-0039-1684049
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Acute Respiratory Distress Syndrome Phenotypes

John P. Reilly
1   Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
,
Carolyn S. Calfee
2   Department of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California
,
Jason D. Christie
1   Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
06 May 2019 (online)

Abstract

The acute respiratory distress syndrome (ARDS) phenotype was first described over 50 years ago and since that time significant progress has been made in understanding the biologic processes underlying the syndrome. Despite this improved understanding, no pharmacologic therapies aimed at the underlying biology have been proven effective in ARDS. Increasingly, ARDS has been recognized as a heterogeneous syndrome characterized by subphenotypes with distinct clinical, radiographic, and biologic differences, distinct outcomes, and potentially distinct responses to therapy. The Berlin Definition of ARDS specifies three severity classifications: mild, moderate, and severe based on the PaO2 to FiO2 ratio. Two randomized controlled trials have demonstrated a potential benefit to prone positioning and neuromuscular blockade in moderate to severe phenotypes of ARDS only. Precipitating risk factor, direct versus indirect lung injury, and timing of ARDS onset can determine other clinical phenotypes of ARDS after admission. Radiographic phenotypes of ARDS have been described based on a diffuse versus focal pattern of infiltrates on chest imaging. Finally and most promisingly, biologic subphenotypes or endotypes have increasingly been identified using plasma biomarkers, genetics, and unbiased approaches such as latent class analysis. The potential of precision medicine lies in identifying novel therapeutics aimed at ARDS biology and the subpopulation within ARDS most likely to respond. In this review, we discuss the challenges and approaches to subphenotype ARDS into clinical, radiologic, severity, and biologic phenotypes with an eye toward the future of precision medicine in critical care.

 
  • References

  • 1 Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2 (7511): 319-323
  • 2 Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 1988; 138 (03) 720-723
  • 3 Bernard GR, Artigas A, Brigham KL. , et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149 (3, Pt 1): 818-824
  • 4 Ranieri VM, Rubenfeld GD, Thompson BT. , et al; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23) 2526-2533
  • 5 Moss M, Goodman PL, Heinig M, Barkin S, Ackerson L, Parsons PE. Establishing the relative accuracy of three new definitions of the adult respiratory distress syndrome. Crit Care Med 1995; 23 (10) 1629-1637
  • 6 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. ; Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 7 Guérin C, Reignier J, Richard JC. , et al; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368 (23) 2159-2168
  • 8 Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med 2017; 5 (06) 524-534
  • 9 Pham T, Rubenfeld GD. Fifty years of research in ARDS. The epidemiology of acute respiratory distress syndrome. A 50th birthday review. Am J Respir Crit Care Med 2017; 195 (07) 860-870
  • 10 Rubenfeld GD, Caldwell E, Granton J, Hudson LD, Matthay MA. Interobserver variability in applying a radiographic definition for ARDS. Chest 1999; 116 (05) 1347-1353
  • 11 Meade MO, Cook RJ, Guyatt GH. , et al. Interobserver variation in interpreting chest radiographs for the diagnosis of acute respiratory distress syndrome. Am J Respir Crit Care Med 2000; 161 (01) 85-90
  • 12 Sjoding MW, Hofer TP, Co I, Courey A, Cooke CR, Iwashyna TJ. Interobserver reliability of the Berlin ARDS definition and strategies to improve the reliability of ARDS diagnosis. Chest 2018; 153 (02) 361-367
  • 13 Bellani G, Laffey JG, Pham T. , et al; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315 (08) 788-800
  • 14 Shah CV, Lanken PN, Localio AR. , et al. An alternative method of acute lung injury classification for use in observational studies. Chest 2010; 138 (05) 1054-1061
  • 15 Thille AW, Esteban A, Fernández-Segoviano P. , et al. Comparison of the Berlin Definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med 2013; 187 (07) 761-767
  • 16 Hajar R. Evolution of myocardial infarction and its biomarkers: a historical perspective. Heart Views 2016; 17 (04) 167-172
  • 17 Lötvall J, Akdis CA, Bacharier LB. , et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 2011; 127 (02) 355-360
  • 18 Hargreave FE, Nair P. The definition and diagnosis of asthma. Clin Exp Allergy 2009; 39 (11) 1652-1658
  • 19 Rackemann FM. A clinical study of one hundred and fifty cases of bronchial asthma. Arch Intern Med 1918; XXII: 517-552
  • 20 Wenzel SE, Schwartz LB, Langmack EL. , et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999; 160 (03) 1001-1008
  • 21 Moore WC, Meyers DA, Wenzel SE. , et al; National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 2010; 181 (04) 315-323
  • 22 Loza MJ, Djukanovic R, Chung KF. , et al; ADEPT (Airways Disease Endotyping for Personalized Therapeutics) and U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome Consortium) investigators. Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study. Respir Res 2016; 17 (01) 165
  • 23 Lefaudeux D, De Meulder B, Loza MJ. , et al; U-BIOPRED Study Group. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol 2017; 139 (06) 1797-1807
  • 24 Hanania NA, Wenzel S, Rosén K. , et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med 2013; 187 (08) 804-811
  • 25 Agustí A, Celli B, Faner R. What does endotyping mean for treatment in chronic obstructive pulmonary disease?. Lancet 2017; 390 (10098): 980-987
  • 26 van der Geest KSM, Brouwer E, Sanders JS. , et al. Towards precision medicine in ANCA-associated vasculitis. Rheumatology (Oxford) 2018; 57 (08) 1332-1339
  • 27 Greiffo FR, Eickelberg O, Fernandez IE. Systems medicine advances in interstitial lung disease. Eur Respir Rev 2017; 26 (145) 26
  • 28 Mascaux C, Tomasini P, Greillier L, Barlesi F. Personalised medicine for nonsmall cell lung cancer. Eur Respir Rev 2017; 26 (146) 26
  • 29 Mok TS, Wu YL, Thongprasert S. , et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361 (10) 947-957
  • 30 Sequist LV, Yang JC, Yamamoto N. , et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31 (27) 3327-3334
  • 31 Solomon BJ, Mok T, Kim DW. , et al; PROFILE 1014 Investigators. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014; 371 (23) 2167-2177
  • 32 Herbst RS, Giaccone G, Schiller JH. , et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial--INTACT 2. J Clin Oncol 2004; 22 (05) 785-794
  • 33 Giaccone G, Herbst RS, Manegold C. , et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial--INTACT 1. J Clin Oncol 2004; 22 (05) 777-784
  • 34 Romond EH, Perez EA, Bryant J. , et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353 (16) 1673-1684
  • 35 Karapetis CS, Khambata-Ford S, Jonker DJ. , et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359 (17) 1757-1765
  • 36 Chapman PB, Hauschild A, Robert C. , et al; BRIM-3 Study Group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364 (26) 2507-2516
  • 37 Villar J, Pérez-Méndez L, Blanco J. , et al; Spanish Initiative for Epidemiology, Stratification, and Therapies for ARDS (SIESTA) Network. A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting--a prospective, multicenter validation study. Intensive Care Med 2013; 39 (04) 583-592
  • 38 Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev 2016; (06) CD002787
  • 39 Kerr KF, Roth J, Zhu K. , et al. Evaluating biomarkers for prognostic enrichment of clinical trials. Clin Trials 2017; 14 (06) 629-638
  • 40 Li J, Zhao L, Tian L. , et al. A predictive enrichment procedure to identify potential responders to a new therapy for randomized, comparative controlled clinical studies. Biometrics 2016; 72 (03) 877-887
  • 41 Papazian L, Forel JM, Gacouin A. , et al; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363 (12) 1107-1116
  • 42 Segredo V, Caldwell JE, Matthay MA, Sharma ML, Gruenke LD, Miller RD. Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 1992; 327 (08) 524-528
  • 43 Testelmans D, Maes K, Wouters P. , et al. Rocuronium exacerbates mechanical ventilation-induced diaphragm dysfunction in rats. Crit Care Med 2006; 34 (12) 3018-3023
  • 44 Murray MJ, Cowen J, DeBlock H. , et al; Task Force of the American College of Critical Care Medicine (ACCM) of the Society of Critical Care Medicine (SCCM), American Society of Health-System Pharmacists, American College of Chest Physicians. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med 2002; 30 (01) 142-156
  • 45 Sud S, Friedrich JO, Taccone P. , et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010; 36 (04) 585-599
  • 46 Gattinoni L, Carlesso E, Taccone P, Polli F, Guérin C, Mancebo J. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol 2010; 76 (06) 448-454
  • 47 Monchi M, Bellenfant F, Cariou A. , et al. Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 1998; 158 (04) 1076-1081
  • 48 Cooke CR, Kahn JM, Caldwell E. , et al. Predictors of hospital mortality in a population-based cohort of patients with acute lung injury. Crit Care Med 2008; 36 (05) 1412-1420
  • 49 Villar J, Ambrós A, Soler JA. , et al; Stratification and Outcome of Acute Respiratory Distress Syndrome (STANDARDS) Network. Age, PaO2/FIO2, and plateau pressure score: a proposal for a simple outcome score in patients with the acute respiratory distress syndrome. Crit Care Med 2016; 44 (07) 1361-1369
  • 50 Amato MB, Meade MO, Slutsky AS. , et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372 (08) 747-755
  • 51 Nuckton TJ, Alonso JA, Kallet RH. , et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346 (17) 1281-1286
  • 52 Sinha P, Calfee CS, Beitler JR. , et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 2019; 199 (03) 333-341
  • 53 Hudson LD, Milberg JA, Anardi D, Maunder RJ. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med 1995; 151 (2, Pt 1): 293-301
  • 54 Reilly JP, Anderson BJ, Hudock KM. , et al. Neutropenic sepsis is associated with distinct clinical and biological characteristics: a cohort study of severe sepsis. Crit Care 2016; 20 (01) 222
  • 55 Reilly JP, Zhao Z, Shashaty MGS. , et al. Low to moderate air pollutant exposure and acute respiratory distress syndrome after severe trauma. Am J Respir Crit Care Med 2019; 199 (01) 62-70
  • 56 Gajic O, Dabbagh O, Park PK. , et al; U.S. Critical Illness and Injury Trials Group: Lung Injury Prevention Study Investigators (USCIITG-LIPS). Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med 2011; 183 (04) 462-470
  • 57 Trillo-Alvarez C, Cartin-Ceba R, Kor DJ. , et al. Acute lung injury prediction score: derivation and validation in a population-based sample. Eur Respir J 2011; 37 (03) 604-609
  • 58 Sheu CC, Gong MN, Zhai R. , et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest 2010; 138 (03) 559-567
  • 59 Sevransky JE, Martin GS, Shanholtz C. , et al. Mortality in sepsis versus non-sepsis induced acute lung injury. Crit Care 2009; 13 (05) R150
  • 60 Calfee CS, Eisner MD, Ware LB. , et al; Acute Respiratory Distress Syndrome Network, National Heart, Lung, and Blood Institute. Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders. Crit Care Med 2007; 35 (10) 2243-2250
  • 61 Shaver CM, Bastarache JA. Clinical and biological heterogeneity in acute respiratory distress syndrome: direct versus indirect lung injury. Clin Chest Med 2014; 35 (04) 639-653
  • 62 Rubenfeld GD, Caldwell E, Peabody E. , et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005; 353 (16) 1685-1693
  • 63 Brun-Buisson C, Minelli C, Bertolini G. , et al; ALIVE Study Group. Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study. Intensive Care Med 2004; 30 (01) 51-61
  • 64 Hoelz C, Negri EM, Lichtenfels AJ. , et al. Morphometric differences in pulmonary lesions in primary and secondary ARDS. A preliminary study in autopsies. Pathol Res Pract 2001; 197 (08) 521-530
  • 65 Goodman LR, Fumagalli R, Tagliabue P. , et al. Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlations. Radiology 1999; 213 (02) 545-552
  • 66 Pelosi P, D'Onofrio D, Chiumello D. , et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl 2003; 42: 48s-56s
  • 67 Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes?. Am J Respir Crit Care Med 1998; 158 (01) 3-11
  • 68 Albaiceta GM, Taboada F, Parra D, Blanco A, Escudero D, Otero J. Differences in the deflation limb of the pressure-volume curves in acute respiratory distress syndrome from pulmonary and extrapulmonary origin. Intensive Care Med 2003; 29 (11) 1943-1949
  • 69 Calfee CS, Janz DR, Bernard GR. , et al. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest 2015; 147 (06) 1539-1548
  • 70 Uchida T, Shirasawa M, Ware LB. , et al. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 2006; 173 (09) 1008-1015
  • 71 van der Heijden M, Pickkers P, van Nieuw Amerongen GP. , et al. Circulating angiopoietin-2 levels in the course of septic shock: relation with fluid balance, pulmonary dysfunction and mortality. Intensive Care Med 2009; 35 (09) 1567-1574
  • 72 Calfee CS, Gallagher D, Abbott J, Thompson BT, Matthay MA. , NHLBI ARDS Network. Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med 2012; 40 (06) 1731-1737
  • 73 Rubin DB, Wiener-Kronish JP, Murray JF. , et al. Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J Clin Invest 1990; 86 (02) 474-480
  • 74 Tejera P, Meyer NJ, Chen F. , et al. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet 2012; 49 (11) 671-680
  • 75 Liao KM, Chen CW, Hsiue TR, Lin WC. Timing of acute respiratory distress syndrome onset is related to patient outcome. J Formos Med Assoc 2009; 108 (09) 694-703
  • 76 Croce MA, Fabian TC, Davis KA, Gavin TJ. Early and late acute respiratory distress syndrome: two distinct clinical entities. J Trauma 1999; 46 (03) 361-366 , discussion 366–368
  • 77 Reilly JP, Bellamy S, Shashaty MG. , et al. Heterogeneous phenotypes of acute respiratory distress syndrome after major trauma. Ann Am Thorac Soc 2014; 11 (05) 728-736
  • 78 Zhang R, Wang Z, Tejera P. , et al. Late-onset moderate to severe acute respiratory distress syndrome is associated with shorter survival and higher mortality: a two-stage association study. Intensive Care Med 2017; 43 (03) 399-407
  • 79 Vande Vusse LK, Caldwell E, Tran E. , et al. The epidemiology of transfusion-related acute lung injury varies according to the applied definition of lung injury onset time. Ann Am Thorac Soc 2015; 12 (09) 1328-1335
  • 80 Sakusic A, Gajic O. Timing of ARDS onset. A neglected confounder. Ann Am Thorac Soc 2015; 12 (09) 1261-1262
  • 81 Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ. ; CT Scan ARDS Study Group. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. Intensive Care Med 2000; 26 (07) 857-869
  • 82 Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P. ; CT Scan ARDS Study Group. Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. Intensive Care Med 2000; 26 (08) 1046-1056
  • 83 Mrozek S, Jabaudon M, Jaber S. , et al; Azurea network. Elevated plasma levels of sRAGE are associated with nonfocal CT-based lung imaging in patients with ARDS: a prospective multicenter study. Chest 2016; 150 (05) 998-1007
  • 84 Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult respiratory distress syndrome. Intensive Care Med 2000; 26 (09) 1215-1227
  • 85 Constantin JM, Grasso S, Chanques G. , et al. Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit Care Med 2010; 38 (04) 1108-1117
  • 86 Jabaudon M, Godet T, Futier E. , et al; AZUREA group. Rationale, study design and analysis plan of the lung imaging morphology for ventilator settings in acute respiratory distress syndrome study (LIVE study): study protocol for a randomised controlled trial. Anaesth Crit Care Pain Med 2017; 36 (05) 301-306
  • 87 Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med 2017; 377 (19) 1904-1905
  • 88 Reilly JP, Christie JD, Meyer NJ. Fifty years of research in ARDS. Genomic contributions and opportunities. Am J Respir Crit Care Med 2017; 196 (09) 1113-1121
  • 89 Meyer NJ, Christie JD. Genetic heterogeneity and risk of acute respiratory distress syndrome. Semin Respir Crit Care Med 2013; 34 (04) 459-474
  • 90 Akey JM. Constructing genomic maps of positive selection in humans: where do we go from here?. Genome Res 2009; 19 (05) 711-722
  • 91 Marshall RP, Webb S, Bellingan GJ. , et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 2002; 166 (05) 646-650
  • 92 Tiret L, Rigat B, Visvikis S. , et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 1992; 51 (01) 197-205
  • 93 Imai Y, Kuba K, Rao S. , et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436 7047 112-116
  • 94 Wösten-van Asperen RM, Lutter R, Specht PA. , et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J Pathol 2011; 225 (04) 618-627
  • 95 Khan A, Benthin C, Zeno B. , et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 2017; 21 (01) 234
  • 96 Reilly JP, Anderson BJ, Mangalmurti NS. , et al. The ABO histo-blood group and AKI in critically ill patients with trauma or sepsis. Clin J Am Soc Nephrol 2015; 10 (11) 1911-1920
  • 97 Reilly JP, Meyer NJ, Shashaty MGS. , et al. ABO blood type A is associated with increased risk of ARDS in whites following both major trauma and severe sepsis. Chest 2014; 145 (04) 753-761
  • 98 Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature 1990; 345 6272 229-233
  • 99 Cserti CM, Dzik WH. The ABO blood group system and Plasmodium falciparum malaria. Blood 2007; 110 (07) 2250-2258
  • 100 Chesmore K, Bartlett J, Williams SM. The ubiquity of pleiotropy in human disease. Hum Genet 2018; 137 (01) 39-44
  • 101 Reilly MP, Li M, He J. , et al; Myocardial Infarction Genetics Consortium; Wellcome Trust Case Control Consortium. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 2011; 377 9763 383-392
  • 102 Amundadottir L, Kraft P, Stolzenberg-Solomon RZ. , et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 2009; 41 (09) 986-990
  • 103 Wiggins KL, Smith NL, Glazer NL. , et al. ABO genotype and risk of thrombotic events and hemorrhagic stroke. J Thromb Haemost 2009; 7 (02) 263-269
  • 104 Barbalic M, Dupuis J, Dehghan A. , et al. Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels. Hum Mol Genet 2010; 19 (09) 1863-1872
  • 105 Franchini M, Capra F, Targher G, Montagnana M, Lippi G. Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications. Thromb J 2007; 5: 14
  • 106 Qi L, Cornelis MC, Kraft P. , et al. Genetic variants in ABO blood group region, plasma soluble E-selectin levels and risk of type 2 diabetes. Hum Mol Genet 2010; 19 (09) 1856-1862
  • 107 Lieb W, Chen MH, Larson MG. , et al. Genome-wide association study for endothelial growth factors. Circ Cardiovasc Genet 2015; 8 (02) 389-397
  • 108 Sun BB, Maranville JC, Peters JE. , et al. Genomic atlas of the human plasma proteome. Nature 2018; 558 (7708): 73-79
  • 109 Ware LB, Koyama T, Zhao Z. , et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit Care 2013; 17 (05) R253
  • 110 Miller EJ, Cohen AB, Matthay MA. Increased interleukin-8 concentrations in the pulmonary edema fluid of patients with acute respiratory distress syndrome from sepsis. Crit Care Med 1996; 24 (09) 1448-1454
  • 111 Agrawal A, Matthay MA, Kangelaris KN. , et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 2013; 187 (07) 736-742
  • 112 Calfee CS, Eisner MD, Parsons PE. , et al; NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med 2009; 35 (02) 248-257
  • 113 Ware LB, Eisner MD, Thompson BT, Parsons PE, Matthay MA. Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med 2004; 170 (07) 766-772
  • 114 Jabaudon M, Blondonnet R, Pereira B. , et al. Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Med 2018; 44 (09) 1388-1399
  • 115 Eisner MD, Parsons P, Matthay MA, Ware L, Greene K. ; Acute Respiratory Distress Syndrome Network. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003; 58 (11) 983-988
  • 116 Janz DR, Ware LB. Biomarkers of ALI/ARDS: pathogenesis, discovery, and relevance to clinical trials. Semin Respir Crit Care Med 2013; 34 (04) 537-548
  • 117 Ware LB, Matthay MA, Parsons PE, Thompson BT, Januzzi JL, Eisner MD. ; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med 2007; 35 (08) 1821-1828
  • 118 Meyer NJ, Li M, Feng R. , et al. ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med 2011; 183 (10) 1344-1353
  • 119 Su L, Zhai R, Sheu CC. , et al. Genetic variants in the angiopoietin-2 gene are associated with increased risk of ARDS. Intensive Care Med 2009; 35 (06) 1024-1030
  • 120 Bhandari V, Choo-Wing R, Harijith A. , et al. Increased hyperoxia-induced lung injury in nitric oxide synthase 2 null mice is mediated via angiopoietin 2. Am J Respir Cell Mol Biol 2012; 46 (05) 668-676
  • 121 Linsel-Nitschke P, Götz A, Erdmann J. , et al; Wellcome Trust Case Control Consortium (WTCCC); Cardiogenics Consortium. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease--a mendelian randomisation study. PLoS One 2008; 3 (08) e2986
  • 122 Elliott P, Chambers JC, Zhang W. , et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA 2009; 302 (01) 37-48
  • 123 Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008; 27 (08) 1133-1163
  • 124 Reilly JP, Wang F, Jones TK. , et al. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med 2018; 44 (11) 1849-1858
  • 125 Granowitz EV, Clark BD, Mancilla J, Dinarello CA. Interleukin-1 receptor antagonist competitively inhibits the binding of interleukin-1 to the type II interleukin-1 receptor. J Biol Chem 1991; 266 (22) 14147-14150
  • 126 Meyer NJ, Feng R, Li M. , et al. IL1RN coding variant is associated with lower risk of acute respiratory distress syndrome and increased plasma IL-1 receptor antagonist. Am J Respir Crit Care Med 2013; 187 (09) 950-959
  • 127 Fisher Jr CJ, Dhainaut JF, Opal SM. , et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 1994; 271 (23) 1836-1843
  • 128 Fisher Jr CJ, Slotman GJ, Opal SM. , et al; IL-1RA Sepsis Syndrome Study Group. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Crit Care Med 1994; 22 (01) 12-21
  • 129 Opal SM, Fisher Jr CJ, Dhainaut JF. , et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit Care Med 1997; 25 (07) 1115-1124
  • 130 Meyer NJ, Reilly JP, Anderson BJ. , et al. Mortality benefit of recombinant human interleukin-1 receptor antagonist for sepsis varies by initial interleukin-1 receptor antagonist plasma concentration. Crit Care Med 2018; 46 (01) 21-28
  • 131 Sapru A, Calfee CS, Liu KD. , et al; NHLBI ARDS Network. Plasma soluble thrombomodulin levels are associated with mortality in the acute respiratory distress syndrome. Intensive Care Med 2015; 41 (03) 470-478
  • 132 Miyoshi S, Ito R, Katayama H. , et al. Combination therapy with sivelestat and recombinant human soluble thrombomodulin for ARDS and DIC patients. Drug Des Devel Ther 2014; 8: 1211-1219
  • 133 Proudfoot A, Bayliffe A, O'Kane CM. , et al. Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury. Thorax 2018; 73 (08) 723-730
  • 134 Wong HR, Cvijanovich N, Lin R. , et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med 2009; 7: 34
  • 135 Wong HR, Cvijanovich NZ, Anas N. , et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med 2015; 191 (03) 309-315
  • 136 Wong HR, Atkinson SJ, Cvijanovich NZ. , et al. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Crit Care Med 2016; 44 (10) e1000-e1003
  • 137 Davenport EE, Burnham KL, Radhakrishnan J. , et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med 2016; 4 (04) 259-271
  • 138 Burnham KL, Davenport EE, Radhakrishnan J. , et al. Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. Am J Respir Crit Care Med 2017; 196 (03) 328-339
  • 139 Scicluna BP, van Vught LA, Zwinderman AH. , et al; MARS consortium. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med 2017; 5 (10) 816-826
  • 140 Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2001; 2 (06) 418-427
  • 141 Lanza ST, Tan X, Bray BC. Latent class analysis with distal outcomes: a flexible model-based approach. Struct Equ Modeling 2013; 20 (01) 1-26
  • 142 Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. ; NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014; 2 (08) 611-620
  • 143 Delucchi K, Famous KR, Ware LB, Parsons PE, Thompson BT, Calfee CS. ; ARDS Network. Stability of ARDS subphenotypes over time in two randomised controlled trials. Thorax 2018; 73 (05) 439-445
  • 144 Famous KR, Delucchi K, Ware LB. , et al; ARDS Network. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med 2017; 195 (03) 331-338
  • 145 Brower RG, Lanken PN, MacIntyre N. , et al; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351 (04) 327-336
  • 146 Wiedemann HP, Wheeler AP, Bernard GR. , et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354 (24) 2564-2575
  • 147 Sinha P, Delucchi KL, Thompson BT, McAuley DF, Matthay MA, Calfee CS. ; NHLBI ARDS Network. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med 2018; 44 (11) 1859-1869
  • 148 Calfee CS, Delucchi KL, Sinha P. , et al; Irish Critical Care Trials Group. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 2018; 6 (09) 691-698
  • 149 McAuley DF, Laffey JG, O'Kane CM. , et al; HARP-2 Investigators; Irish Critical Care Trials Group. Simvastatin in the acute respiratory distress syndrome. N Engl J Med 2014; 371 (18) 1695-1703
  • 150 Truwit JD, Bernard GR, Steingrub J. , et al; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 2014; 370 (23) 2191-2200
  • 151 Bos LD, Schouten LR, van Vught LA. , et al; MARS consortium. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis. Thorax 2017; 72 (10) 876-883
  • 152 Bos LD, Scicluna BP, Ong DY, Cremer O, van der Poll T, Schultz MJ. ; MARS consortium. Understanding heterogeneity in biological phenotypes of ARDS by leukocyte expression profiles. Am J Respir Crit Care Med 2019
  • 153 Bhatt DL, Mehta C. Adaptive designs for clinical trials. N Engl J Med 2016; 375 (01) 65-74