Semin Neurol 2019; 39(03): 312-321
DOI: 10.1055/s-0039-1687838
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging in Encephalitis

1   Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins Encephalitis Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
,
Balaji Jagdish
1   Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins Encephalitis Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
02 August 2019 (online)

Abstract

Despite recent advances in diagnostic and therapeutic modalities for infectious and autoimmune encephalitis, the management of patients with suspected or confirmed encephalitis poses a great challenge to physicians. Neuroimaging, including magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning, can play a crucial role in substantiating the diagnosis of encephalitis and eliminating clinical mimics of encephalitis from consideration. Moreover, characteristic neuroimaging patterns can aid in defining specific infectious and autoimmune etiologies. Volumetric and functional MRI, in particular, are being increasingly used to characterize outcomes following encephalitis and can shed light on brain reorganization and function after the acute phase of disease has resolved. Here, we discuss the uses of structural, functional, and PET neuroimaging in the clinical assessment of the acute and recovery phases of encephalitis.

 
  • References

  • 1 Vallabhaneni D, Naveed MA, Mangla R, Zidan A, Mehta RI. Perfusion imaging in autoimmune encephalitis. Case Rep Radiol 2018; 2018: 3538645
  • 2 Graus F, Titulaer MJ, Balu R. , et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; 15 (04) 391-404
  • 3 Steiner I, Budka H, Chaudhuri A. , et al. Viral encephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol 2005; 12 (05) 331-343
  • 4 Schroth G, Kretzschmar K, Gawehn J, Voigt K. Advantage of magnetic resonance imaging in the diagnosis of cerebral infections. Neuroradiology 1987; 29 (02) 120-126
  • 5 Marchbank ND, Howlett DC, Sallomi DF, Hughes DV. Magnetic resonance imaging is preferred in diagnosing suspected cerebral infections. BMJ 2000; 320 (7228): 187-188
  • 6 Kiroğlu Y, Calli C, Yunten N. , et al. Diffusion-weighted MR imaging of viral encephalitis. Neuroradiology 2006; 48 (12) 875-880
  • 7 Tsuchiya K, Katase S, Yoshino A, Hachiya J. Diffusion-weighted MR imaging of encephalitis. AJR Am J Roentgenol 1999; 173 (04) 1097-1099
  • 8 Venkatesan A, Tunkel AR, Bloch KC. , et al; International Encephalitis Consortium Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis 2013; 57 (08) 1114-1128
  • 9 Bertrand A, Leclercq D, Martinez-Almoyna L, Girard N, Stahl JP, De-Broucker T. MR imaging of adult acute infectious encephalitis. Med Mal Infect 2017; 47 (03) 195-205
  • 10 Rath TJ, Hughes M, Arabi M, Shah GV. Imaging of cerebritis, encephalitis, and brain abscess. Neuroimaging Clin N Am 2012; 22 (04) 585-607
  • 11 Defres S, Keller SS, Das K. , et al; ENCEPH UK study group A feasibility study of quantifying longitudinal brain changes in herpes simplex virus (HSV) encephalitis using magnetic resonance imaging (MRI) and stereology. PLoS One 2017; 12 (01) e0170215
  • 12 Chow FC, Glaser CA, Sheriff H. , et al. Use of clinical and neuroimaging characteristics to distinguish temporal lobe herpes simplex encephalitis from its mimics. Clin Infect Dis 2015; 60 (09) 1377-1383
  • 13 Tan IL, McArthur JC, Venkatesan A, Nath A. Atypical manifestations and poor outcome of herpes simplex encephalitis in the immunocompromised. Neurology 2012; 79 (21) 2125-2132
  • 14 Whitley RJ, Cobbs CG, Alford Jr CA. , et al; NIAD Collaborative Antiviral Study Group Diseases that mimic herpes simplex encephalitis. Diagnosis, presentation, and outcome. JAMA 1989; 262 (02) 234-239
  • 15 Kelley BP, Patel SC, Marin HL, Corrigan JJ, Mitsias PD, Griffith B. Autoimmune encephalitis: pathophysiology and imaging review of an overlooked diagnosis. AJNR Am J Neuroradiol 2017; 38 (06) 1070-1078
  • 16 da Rocha AJ, Nunes RH, Maia Jr AC, do Amaral LL. Recognizing autoimmune-mediated encephalitis in the differential diagnosis of limbic disorders. AJNR Am J Neuroradiol 2015; 36 (12) 2196-2205
  • 17 Gultekin SH, Rosenfeld MR, Voltz R, Eichen J, Posner JB, Dalmau J. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 2000; 123 (Pt 7): 1481-1494
  • 18 Dalmau J, Graus F, Villarejo A. , et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004; 127 (Pt 8): 1831-1844
  • 19 Heine J, Prüss H, Bartsch T, Ploner CJ, Paul F, Finke C. Imaging of autoimmune encephalitis--relevance for clinical practice and hippocampal function. Neuroscience 2015; 309: 68-83
  • 20 Saiz A, Blanco Y, Sabater L. , et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 2008; 131 (Pt 10): 2553-2563
  • 21 Höftberger R, Titulaer MJ, Sabater L. , et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013; 81 (17) 1500-1506
  • 22 Knox J, Cowan RU, Doyle JS. , et al. Murray Valley encephalitis: a review of clinical features, diagnosis and treatment. Med J Aust 2012; 196 (05) 322-326
  • 23 Wong SH, Smith DW, Fallon MJ, Kermode AG. Murray valley encephalitis mimicking herpes simplex encephalitis. J Clin Neurosci 2005; 12 (07) 822-824
  • 24 Deresiewicz RL, Thaler SJ, Hsu L, Zamani AA. Clinical and neuroradiographic manifestations of eastern equine encephalitis. N Engl J Med 1997; 336 (26) 1867-1874
  • 25 Beattie GC, Glaser CA, Sheriff H. , et al. Encephalitis with thalamic and basal ganglia abnormalities: etiologies, neuroimaging, and potential role of respiratory viruses. Clin Infect Dis 2013; 56 (06) 825-832
  • 26 Solomon T, Kneen R, Dung NM. , et al. Poliomyelitis-like illness due to Japanese encephalitis virus. Lancet 1998; 351 (9109): 1094-1097
  • 27 Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 2010; 9 (11) 1097-1105
  • 28 Jain H, Deshpande A, Favaz AM, Rajagopal KV. MRI in rabies encephalitis. BMJ Case Rep 2013 ;2013. doi: 10.1136/bcr-2013-201825
  • 29 Handique SK, Das RR, Barman K. , et al. Temporal lobe involvement in Japanese encephalitis: problems in differential diagnosis. AJNR Am J Neuroradiol 2006; 27 (05) 1027-1031
  • 30 Basumatary LJ, Raja D, Bhuyan D, Das M, Goswami M, Kayal AK. Clinical and radiological spectrum of Japanese encephalitis. J Neurol Sci 2013; 325 (1–2): 15-21
  • 31 Dale RC, Merheb V, Pillai S. , et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 2012; 135 (Pt 11): 3453-3468
  • 32 Jubelt B, Mihai C, Li TM, Veerapaneni P. Rhombencephalitis/brainstem encephalitis. Curr Neurol Neurosci Rep 2011; 11 (06) 543-552
  • 33 Tan IL, Mowry EM, Steele SU. , et al. Brainstem encephalitis: etiologies, treatment, and predictors of outcome. J Neurol 2013; 260 (09) 2312-2319
  • 34 Charlier C, Poirée S, Delavaud C. , et al; MONALISA Study Group Imaging of human neurolisteriosis: a prospective study of 71 cases. Clin Infect Dis 2018; 67 (09) 1419-1426
  • 35 Moragas M, Martínez-Yélamos S, Majós C, Fernández-Viladrich P, Rubio F, Arbizu T. Rhombencephalitis: a series of 97 patients. Medicine (Baltimore) 2011; 90 (04) 256-261
  • 36 Chen F, Liu T, Li J, Xing Z, Huang S, Wen G. MRI characteristics and follow-up findings in patients with neurological complications of enterovirus 71-related hand, foot, and mouth disease. Int J Clin Exp Med 2014; 7 (09) 2696-2704
  • 37 Compain C, Sacre K, Puéchal X. , et al. Central nervous system involvement in Whipple disease: clinical study of 18 patients and long-term follow-up. Medicine (Baltimore) 2013; 92 (06) 324-330
  • 38 Black DF, Aksamit AJ, Morris JM. MR imaging of central nervous system Whipple disease: a 15-year review. AJNR Am J Neuroradiol 2010; 31 (08) 1493-1497
  • 39 Lu Z, Zhang B, Qiu W. , et al. Comparative brain stem lesions on MRI of acute disseminated encephalomyelitis, neuromyelitis optica, and multiple sclerosis. PLoS One 2011; 6 (08) e22766
  • 40 Tobin WO, Guo Y, Krecke KN. , et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2017; 140 (09) 2415-2425
  • 41 Gilden D, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol 2009; 8 (08) 731-740
  • 42 Bradshaw MJ, Lalor KB, Vu N, Pruthi S, Bloch KC. Child neurology: Rocky Mountain spotted fever encephalitis. Neurology 2017; 88 (11) e92-e95
  • 43 Agarwal R, Sze G. Neuro-lyme disease: MR imaging findings. Radiology 2009; 253 (01) 167-173
  • 44 Agosta F, Rocca MA, Benedetti B, Capra R, Cordioli C, Filippi M. MR imaging assessment of brain and cervical cord damage in patients with neuroborreliosis. AJNR Am J Neuroradiol 2006; 27 (04) 892-894
  • 45 Sahraian MA, Radue EW, Eshaghi A, Besliu S, Minagar A. Progressive multifocal leukoencephalopathy: a review of the neuroimaging features and differential diagnosis. Eur J Neurol 2012; 19 (08) 1060-1069
  • 46 Berger JR, Aksamit AJ, Clifford DB. , et al. PML diagnostic criteria: consensus statement from the AAN Neuroinfectious Disease Section. Neurology 2013; 80 (15) 1430-1438
  • 47 Bulakbasi N, Kocaoglu M, Tayfun C, Ucoz T. Transient splenial lesion of the corpus callosum in clinically mild influenza-associated encephalitis/encephalopathy. AJNR Am J Neuroradiol 2006; 27 (09) 1983-1986
  • 48 Gallucci M, Limbucci N, Paonessa A, Caranci F. Reversible focal splenial lesions. Neuroradiology 2007; 49 (07) 541-544
  • 49 Young NP, Weinshenker BG, Parisi JE. , et al. Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis. Brain 2010; 133 (Pt 2): 333-348
  • 50 Abou Zeid N, Pirko I, Erickson B. , et al. Diffusion-weighted imaging characteristics of biopsy-proven demyelinating brain lesions. Neurology 2012; 78 (21) 1655-1662
  • 51 Spatola M, Petit-Pedrol M, Simabukuro MM. , et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017; 88 (11) 1012-1020
  • 52 Finke C, Kopp UA, Scheel M. , et al. Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2013; 74 (02) 284-296
  • 53 Wang R, Lai XH, Liu X. , et al. Brain magnetic resonance-imaging findings of anti-N-methyl-D-aspartate receptor encephalitis: a cohort follow-up study in Chinese patients. J Neurol 2018; 265 (02) 362-369
  • 54 Zhang T, Duan Y, Ye J. , et al. Brain MRI characteristics of patients with anti-N-methyl-D-aspartate receptor encephalitis and their associations with 2-year clinical outcome. AJNR Am J Neuroradiol 2018; 39 (05) 824-829
  • 55 Probasco JC, Solnes L, Nalluri A. , et al. Decreased occipital lobe metabolism by FDG-PET/CT: an anti-NMDA receptor encephalitis biomarker. Neurol Neuroimmunol Neuroinflamm 2017; 5 (01) e413
  • 56 Irani SR, Michell AW, Lang B. , et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011; 69 (05) 892-900
  • 57 Flanagan EP, Kotsenas AL, Britton JW. , et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol Neuroimmunol Neuroinflamm 2015; 2 (06) e161
  • 58 Dodich A, Cerami C, Iannaccone S. , et al. Neuropsychological and FDG-PET profiles in VGKC autoimmune limbic encephalitis. Brain Cogn 2016; 108: 81-87
  • 59 Venkatesan A. Epidemiology and outcomes of acute encephalitis. Curr Opin Neurol 2015; 28 (03) 277-282
  • 60 Lancaster E. The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol 2016; 12 (01) 1-13
  • 61 Sonneville R, Gault N, de Montmollin E. , et al. Clinical spectrum and outcomes of patients with encephalitis requiring intensive care. Eur J Neurol 2015; 22 (01) 6-16 , e1
  • 62 Thakur KT, Motta M, Asemota AO. , et al. Predictors of outcome in acute encephalitis. Neurology 2013; 81 (09) 793-800
  • 63 Singh TD, Fugate JE, Rabinstein AA. The spectrum of acute encephalitis: causes, management, and predictors of outcome. Neurology 2015; 84 (04) 359-366
  • 64 Sutter R, Kaplan PW, Cervenka MC. , et al. Electroencephalography for diagnosis and prognosis of acute encephalitis. Clin Neurophysiol 2015; 126 (08) 1524-1531
  • 65 Tsukahara H, Fujii Y, Matsubara K. , et al. Prognostic value of brain injury biomarkers in acute encephalitis/encephalopathy. Pediatr Int 2013; 55 (04) 461-464
  • 66 Sellner J, Davies NW, Howard RS, Petzold A. Neurofilament heavy chain as a marker of neuroaxonal pathology and prognosis in acute encephalitis. Eur J Neurol 2014; 21 (06) 845-850
  • 67 Michael BD, Griffiths MJ, Granerod J. , et al. The interleukin-1 balance during encephalitis is associated with clinical severity, blood-brain barrier permeability, neuroimaging changes, and disease outcome. J Infect Dis 2016; 213 (10) 1651-1660
  • 68 Sili U, Kaya A, Mert A. ; HSV Encephalitis Study Group Herpes simplex virus encephalitis: clinical manifestations, diagnosis and outcome in 106 adult patients. J Clin Virol 2014; 60 (02) 112-118
  • 69 Raschilas F, Wolff M, Delatour F. , et al. Outcome of and prognostic factors for herpes simplex encephalitis in adult patients: results of a multicenter study. Clin Infect Dis 2002; 35 (03) 254-260
  • 70 Erdem H, Cag Y, Ozturk-Engin D. , et al. Results of a multinational study suggest the need for rapid diagnosis and early antiviral treatment at the onset of herpetic meningoencephalitis. Antimicrob Agents Chemother 2015; 59 (06) 3084-3089
  • 71 Caparros-Lefebvre D, Girard-Buttaz I, Reboul S. , et al. Cognitive and psychiatric impairment in herpes simplex virus encephalitis suggest involvement of the amygdalo-frontal pathways. J Neurol 1996; 243 (03) 248-256
  • 72 Reed LJ, Lasserson D, Marsden P, Bright P, Stanhope N, Kopelman MD. Correlations of regional cerebral metabolism with memory performance and executive function in patients with herpes encephalitis or frontal lobe lesions. Neuropsychology 2005; 19 (05) 555-565
  • 73 Singh TD, Fugate JE, Hocker S, Wijdicks EFM, Aksamit Jr AJ, Rabinstein AA. Predictors of outcome in HSV encephalitis. J Neurol 2016; 263 (02) 277-289
  • 74 Davis LE, DeBiasi R, Goade DE. , et al. West Nile virus neuroinvasive disease. Ann Neurol 2006; 60 (03) 286-300
  • 75 Murray KO, Nolan MS, Ronca SE. , et al. The neurocognitive and MRI outcomes of West Nile virus infection: preliminary analysis using an external control group. Front Neurol 2018; 9: 111
  • 76 Sejvar JJ. Clinical manifestations and outcomes of West Nile virus infection. Viruses 2014; 6 (02) 606-623
  • 77 Griffiths MJ, Lemon JV, Rayamajhi A. , et al. The functional, social and economic impact of acute encephalitis syndrome in Nepal--a longitudinal follow-up study. PLoS Negl Trop Dis 2013; 7 (09) e2383
  • 78 Cao L, Fu S, Gao X. , et al. Low protective efficacy of the current Japanese encephalitis vaccine against the emerging genotype 5 Japanese encephalitis virus. PLoS Negl Trop Dis 2016; 10 (05) e0004686
  • 79 Ooi MH, Lewthwaite P, Lai BF. , et al. The epidemiology, clinical features, and long-term prognosis of Japanese encephalitis in central sarawak, malaysia, 1997-2005. Clin Infect Dis 2008; 47 (04) 458-468
  • 80 Shoji H, Murakami T, Murai I. , et al. A follow-up study by CT and MRI in 3 cases of Japanese encephalitis. Neuroradiology 1990; 32 (03) 215-219
  • 81 Finke C, Kopp UA, Pajkert A. , et al. Structural hippocampal damage following anti-N-methyl-D-aspartate receptor encephalitis. Biol Psychiatry 2016; 79 (09) 727-734
  • 82 Finke C, Kopp UA, Prüss H, Dalmau J, Wandinger KP, Ploner CJ. Cognitive deficits following anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2012; 83 (02) 195-198
  • 83 Yeshokumar AK, Gordon-Lipkin E, Arenivas A. , et al. Neurobehavioral outcomes in autoimmune encephalitis. J Neuroimmunol 2017; 312: 8-14
  • 84 Peer M, Prüss H, Ben-Dayan I, Paul F, Arzy S, Finke C. Functional connectivity of large-scale brain networks in patients with anti-NMDA receptor encephalitis: an observational study. Lancet Psychiatry 2017; 4 (10) 768-774
  • 85 Li W, Wu S, Meng Q. , et al. Clinical characteristics and short-term prognosis of LGI1 antibody encephalitis: a retrospective case study. BMC Neurol 2018; 18 (01) 96
  • 86 van Sonderen A, Thijs RD, Coenders EC. , et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016; 87 (14) 1449-1456
  • 87 Heine J, Prüss H, Kopp UA. , et al. Beyond the limbic system: disruption and functional compensation of large-scale brain networks in patients with anti-LGI1 encephalitis. J Neurol Neurosurg Psychiatry 2018; 89 (11) 1191-1199
  • 88 Ariño H, Armangué T, Petit-Pedrol M. , et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016; 87 (08) 759-765
  • 89 Finke C, Prüss H, Heine J. , et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol 2017; 74 (01) 50-59
  • 90 Navarro V, Kas A, Apartis E. , et al; collaborators Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain 2016; 139 (Pt 4): 1079-1093
  • 91 Gadoth A, Pittock SJ, Dubey D. , et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017; 82 (01) 79-92
  • 92 Irani SR, Stagg CJ, Schott JM. , et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013; 136 (Pt 10): 3151-3162
  • 93 Szots M, Blaabjerg M, Orsi G. , et al. Global brain atrophy and metabolic dysfunction in LGI1 encephalitis: a prospective multimodal MRI study. J Neurol Sci 2017; 376: 159-165
  • 94 Herranz-Pérez V, Olucha-Bordonau FE, Morante-Redolat JM, Pérez-Tur J. Regional distribution of the leucine-rich glioma inactivated (LGI) gene family transcripts in the adult mouse brain. Brain Res 2010; 1307: 177-194