Subscribe to RSS
DOI: 10.1055/s-0039-1690105
Bu4NI-Catalyzed C–C Bond Cleavage and Oxidative Esterification of Allyl Alcohols with Toluene Derivatives
The authors gratefully acknowledge financial support from National Key Research and Development Program of China (2017YFB0102900) and State Key Laboratory of Applied Organic Chemistry, Lanzhou University. This work is also sponsored by Natural Science Foundation of Shanghai (18ZR1413900) and Shanghai Pujiang Program (17PJD016).Publication History
Received: 26 April 2019
Accepted after revision: 10 June 2019
Publication Date:
16 July 2019 (online)
§ These authors contributed equally to this work.
Abstract
A novel oxidative esterification of 1-arylprop-2-en-1-ols with toluene derivatives catalyzed by tetrabutylammonium iodide (TBAI) is reported. The optimization of the reaction conditions illustrates that each of experiment parameters including the catalyst, solvent, and oxidant is significant for present oxidative functionalization. This metal-free protocol has a broad substrate scope including the halogen groups for further functionalization and enriches the reactivity profile of allyl alcohol and toluene derivatives. In addition, this protocol represents a new transformation of allyl alcohol involving C–C bond cleavage and C–O bond forming.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690105.
- Supporting Information
-
References
- 1 Otera J. Esterification Methods, Reactions and Applications. Wiley-VCH; Weinheim: 2003
- 2a Pickel TC, Akondi SM, Liebeskind LS. J. Org. Chem. 2019; 84: 4954
- 2b Geraskina MR, Juetten MJ, Winter AH. J. Org. Chem. 2014; 79: 5334
- 2c Morcillo SP, Cienfuegos L. ÁD, Mota AJ, Justicia J, Robles R. J. Org. Chem. 2011; 76: 2277
- 2d Chen C.-T, Munot YS. J. Org. Chem. 2005; 70: 8625
- 2e Chakraborti AK, Singh B, Chankeshwara SV, Patel AR. J. Org. Chem. 2009; 74: 5967
- 3a Liu C, Tang S, Zheng L, Liu D, Zhang H, Lei A. Angew. Chem. Int. Ed. 2012; 51: 1
- 3b Zhao J, Mück-Lichtenfeld C, Studer A. Adv. Synth. Catal. 2013; 355: 1098
- 4a Butta NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929 ; and references cited therein
- 4b Fu J, Huo X, Li B, Zhang W. Org. Biomol. Chem. 2017; 15: 9747 ; and references cited therein
- 4c Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855 ; and references cited therein
- 5a Huo X, Quan M, Yang G, Zhao X, Liu D, Liu Y, Zhang W. Org. Lett. 2014; 16: 1570
- 5b Yao K, Yuan Q, Qu X, Liu Y, Liu D, Zhang W. Chem. Sci. 2019; 10: 1767
- 5c Zhang J, Huo X, Li B, Chen Z, Zou Y, Sun Z, Zhang W. Adv. Synth. Catal. 2019; 361: 1130
- 6a Xie P, Wang J, Fan J, Liu Y, Wo X, Loh T.-P. Green Chem. 2017; 19: 2135
- 6b Dai X, Cheng D, Guan B, Mao W, Xu X, Li X. J. Org. Chem. 2014; 79: 7212
- 6c Trost BM, Nagaraju A, Wang F, Zuo Z, Xu J, Hull KL. Org. Lett. 2019; 21: 1784
- 6d Ueda M, Hartwig JF. Org. Lett. 2010; 12: 92
- 6e Leitner A, Shu C, Hartwig JF. Org. Lett. 2005; 7: 1093
- 7a Das B, Banerjee J, Chowdhury N, Majhi A. Chem. Pharm. Bull. 2006; 54: 1725
- 7b Das B, Chowdhury N, Banerjee J, Majhi A. Tetrahedron Lett. 2006; 47: 6615
- 7c Linstadt RT. H, Peterson CA, Jette CI, Boskovic ZV, Lipshutz BH. Org. Lett. 2017; 19: 328
- 8a Santos MS, Coelho F. RSC Adv. 2012; 2: 3237
- 8b Lawrence NJ, Crump JP, McGown AT, Hadfield JA. Tetrahedron Lett. 2001; 42: 3939
- 8c Bikshapathi R, Prathima PS, Rao VJ. New J. Chem. 2016; 40: 10300
- 9 Deng Z, Wei J, Liao L, Huang H, Zhao X. Org. Lett. 2015; 17: 1834
- 10 Vellakkaran M, Andappan MM. S, Kommu N. Green Chem. 2014; 16: 2788
- 11a Dong Y.-X, Li Y, Gu C.-C, Jiang S.-S, Song R.-J, Li J-H. Org. Lett. 2018; 20: 7594
- 11b Yin Z, Sun P. J. Org. Chem. 2012; 77: 11339
- 11c Adib M, Pashazadeh R, Rajai-Daryasarei S, Moradkhani F, Jahani M, Gohari SJ. A. Tetrahedron 2018; 74: 3858
- 12a Liu H, Shi G, Pan S, Jiang Y, Zhang Y. Org. Lett. 2013; 15: 4098
- 12b Im H, Kang D, Choi S, Shin S, Hong S. Org. Lett. 2018; 20: 7437
- 12c Leth LA, Næsborg L, Reyes-Rodríguez GJ, Tobiesen HN, Iversen MV, Jørgensen KA. J. Am. Chem. Soc. 2018; 140: 12687
- 12d Hu L, Yuan J, Fu J, Zhang T, Gao L, Xiao Y, Mao P, Qu L. Eur. J. Org. Chem. 2018; 4113
- 12e Liu H, Ma L, Zhou R, Chen X, Fang W, Wu J. ACS Catal. 2018; 8: 6224
- 12f Jiang H, Sha S.-C, Jeong SA, Manor BC, Walsh PJ. Org. Lett. 2019; 21: 1735
- 12g Rout SK, Guin S, Ghara KK, Banerjee A, Patel BK. Org. Lett. 2012; 14: 3982
- 12h Yin Z, Sun P. J. Org. Chem. 2012; 77: 11339
- 13a Guo L.-N, Wang S, Duan X.-H, Zhou S.-L. Chem. Commun. 2015; 51: 4803
- 13b Zhou S.-L, Guo L.-N, Wang H, Duan X.-H. Chem. Eur. J. 2013; 19: 12970
- 13c Zhou S.-L, Guo L.-N, Wang S, Duan X.-H. Chem. Commun. 2014; 50: 3589
- 14a Liu Z, Zhang X, Li X, Li F, Li C, Jia X, Li J. Org. Lett. 2016; 18: 4052
- 14b Li C, Jin T, Zhang X, Li C, Jia X, Li J. Org. Lett. 2016; 18: 1916
- 14c Li C, Deng H, Li C, Jia X, Li J. Org. Lett. 2015; 17: 5718
- 14d Li C, Deng H, Jin T, Liu Z, Jiang R, Li C, Jia X, Li J. Synthesis 2017; 49: 4350
- 15a Zhang X, Liu Z, Gao Y, Li F, Tian Y, Li C, Jia X, Li J. Adv. Synth. Catal. 2018; 360: 272
- 15b Jin T, Yuan H, Su S, Jia X, Li C, Li J, Fang J. Chem. Commun. 2018; 54: 14128
- 15c Su S, Li J, Sun M, Zhao H, Chen Y, Li J. Chem. Commun. 2018; 54: 9611
- 15d Li J, Chen Y, Yuan H, Hu J, Cui Y, Yang M, Li M, Li J. Adv. Synth. Catal. 2018; 360: 2333
- 15e Jin T, Tang Z, Hu J, Yuan H, Chen Y, Li C, Jia X, Li J. Org. Lett. 2018; 20: 413
- 15f Li F, Hu P, Sun M, Li C, Jia X, Li J. Chem. Commun. 2018; 54: 6412
- 15g Tian Y, Tian L, Li C, Jia X, Li J. Org. Lett. 2016; 18: 840
- 15h Tian Y, Tian L, He X, Li C, Jia X, Li J. Org. Lett. 2015; 17: 4874
- 16 Ushijima S, Dohi S, Moriyama K, Togo H. Tetrahedron 2012; 68: 1436
- 17a Lattanzi A. Org. Lett. 2005; 7: 2579
- 17b Lattanzi A. Adv. Synth. Catal. 2006; 348: 339
- 17c Watanabe S, Arai T, Sasai H, Bougauchi M, Shibasaki M. J. Org. Chem. 1998; 63: 8090
- 18 Essa AH, Lerrick RI, Çiftçi E, Harrington RW, Waddell PG, Clegg W, Hall MJ. Org. Biomol. Chem. 2015; 13: 5793
- 19a Tabuchi T, Nojima M. J. Org. Chem. 1991; 56: 6591
- 19b Sawaki Y, Foote CS. J. Am. Chem. Soc. 1983; 105: 5035
- 19c Liu Z.-Q, Zhao L, Shang X, Cui Z. Org. Lett. 2012; 14: 3218
- 20 Majji G, Guin S, Gogoi A, Rout SK, Patel BK. Chem. Commun. 2013; 49: 3031
- 21 Liu L, Yun L, Wang Z, Fu X, Yan C.-H. Tetrahedron Lett. 2013; 54: 5383
- 22 Feng J, Liang S, Chen S.-Y, Zhang J, Fu S.-S, Yu X.-Q. Adv. Synth. Catal. 2012; 354: 1287
- 23 Finney EE, Ogawa KA, Boydston AJ. J. Am. Chem. Soc. 2012; 134: 12374
- 24 Lu B, Zhu F, Sun H.-M, Shen Q. Org. Lett. 2017; 19: 1132
- 25 Shimojo H, Moriyama K, Togo H. Synthesis 2015; 47: 1280
- 26 Nowrouzi N, Mehranpour AM, Rad JA. Tetrahedron 2010; 66: 9596
- 27 Huang J, Li L.-T, Li H.-Y, Husan E, Wang P, Wang B. Chem. Commun. 2012; 48: 10204
- 28 Molander GA, Traister KM, Barcellos T. J. Org. Chem. 2013; 78: 4123
- 29 Runikhina SA, Usanov DL, Chizhov AO, Chusov D. Org. Lett. 2018; 20: 7856
- 30 Singha R, Ray JK. Tetrahedron Lett. 2016; 57: 5395
- 31 Kadam ST, Kim SS. Synthesis 2008; 3307
- 32 Chaintreau A, Adrian G, Couturier D. J. Org. Chem. 1981; 46: 4562
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see: