Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(20): 3792-3795
DOI: 10.1055/s-0039-1690151
DOI: 10.1055/s-0039-1690151
psp
A Practical Synthesis of Ammonia from Nitrogen Gas, Samarium Diiodide and Water Catalyzed by a Molybdenum–PCP Pincer Complex
This project is supported by Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST) (JPMJCR1541). We thank the Japan Society for the Promotion of Science (JSPS) for Grants-in-Aid for Scientific Research (JP17H01201, JP15H05798 and JP18K19093) from JSPS and the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Y.A. is a recipient of a JSPS Predoctoral Fellowship for Young Scientists.Further Information
Publication History
Received: 25 June 2019
Accepted after revision: 12 July 2019
Publication Date:
15 August 2019 (online)

Abstract
A practical method for ammonia synthesis is described. The reaction of atmospheric pressure of nitrogen gas with samarium diiodide as a reducing reagent and water as a proton source in the presence of a catalytic amount of a molybdenum trichloride complex bearing a PCP [1,3-bis(di-tert-butylphosphinomethyl)benzimidazol-2-ylidene]-type pincer ligand occurs under ambient conditions to afford ammonium sulfate after treatment with sulfuric acid.
-
References
- 1 Liu H. Ammonia Synthesis Catalysts, Innovation and Practice . Chemical Industry Press & World Scientific; Singapore/Beijing: 2013
- 2a Burford RJ, Fryzuk MD. Nat. Rev. 2017; 1: 26
- 2b Nitrogen Fixation . In Topics in Organometallic Chemistry, Vol. 60. Nishibayashi Y. Springer; Switzerland: 2017
- 2c Foster SL, Bakovic SI. P, Duda RD, Maheshwari S, Milton RD, Minteer SD, Janik MJ, Renner JN, Greenlee LF. Nat. Catal. 2018; 1: 490
- 2d Stucke N, Flöser BM, Weyrich T, Tuczek T. Eur. J. Inorg. Chem. 2018; 1337
- 2e Nishibayashi Y. Dalton Trans. 2018; 47: 11290
- 2f Tanabe Y, Nishibayashi Y. Coord. Chem. Rev. 2019; 381: 135
- 2g Tanabe Y, Nishibayashi Y. Coord. Chem. Rev. 2019; 389: 73
- 2h Transition Metal-Dinitrogen Complexes: Preparation and Reactivity. Nishibayashi Y. Wiley-VCH; Weinheim: 2019
- 3a Yondulov DV, Schrock RR. Science 2003; 301: 76
- 3b Schrock RR. Acc. Chem. Res. 2005; 38: 955
- 3c Schrock RR. Angew. Chem. Int. Ed. 2008; 47: 5512
- 3d Wickramasinghe LA, Ogawa T, Schrock RR, Müller P. J. Am. Chem. Soc. 2017; 139: 9132
- 4a Anderson JS, Rittle J, Peters JC. Nature 2013; 501: 84
- 4b Del Castillo TJ, Thompson NB, Suess DL. M, Ung G, Peters JC. Inorg. Chem. 2015; 54: 9256
- 4c Buscagan TM, Oyala PH, Peters JC. Angew. Chem. Int. Ed. 2017; 56: 6921
- 4d Fajardo JJr, Peters JC. J. Am. Chem. Soc. 2017; 139: 16105
- 4e Chalkley MJ, Del Castillo TJ, Matson BD, Roddy JP, Peters JC. ACS Cent. Sci. 2017; 3: 217
- 4f Chalkley MJ, Del Castillo TJ, Matson BD, Peters JC. J. Am. Chem. Soc. 2018; 140: 6122
- 4g Thompson NB, Oyala PH, Dong HT, Chalkley MJ, Zhao J, Alp EE, Hu M, Lehnert N, Peters JC. Inorg. Chem. 2019; 58: 3535
- 4h Schild DJ, Peters JC. ACS Catal. 2019; 9: 4386
- 4i Nesbit MA, Oyala PH, Peters JC. J. Am. Chem. Soc. 2019; 141: 8116
- 5 Doyle LR, Wooles AJ, Jenkins LC, Tuna F, McInnes EJ. L, Liddle ST. Angew. Chem. Int. Ed. 2018; 57: 6314
- 6a Arashiba K, Miyake Y, Nishibayashi Y. Nat. Chem. 2011; 3: 120
- 6b Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y. J. Am. Chem. Soc. 2014; 136: 9719
- 6c Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K, Nishibayashi Y. Nat. Commun. 2014; 5: 3737
- 6d Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa Y, Nishibayashi Y. Chem. Sci. 2015; 6: 3940
- 6e Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y. J. Am. Chem. Soc. 2015; 137: 5666
- 6f Kuriyama S, Arashiba K, Nakajima K, Matsuo Y, Tanaka H, Ishii K, Yoshizawa K, Nishibayashi Y. Nat. Commun. 2016; 7: 12181
- 6g Kuriyama S, Arashiba K, Tanaka H, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 14291
- 6h Eizawa A, Arashiba K, Tanaka H, Kuriyama S, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y. Nat. Commun. 2017; 8: 14874
- 6i Arashiba K, Eizawa A, Tanaka H, Nakajima K, Yoshizawa K, Nishibayashi Y. Bull. Chem. Soc. Jpn. 2017; 90: 1111
- 6j Sekiguchi Y, Kuriyama S, Eizawa A, Arashiba K, Nakajima K, Nishibayashi Y. Chem. Commun. 2017; 53: 12040
- 6k Higuchi J, Kuriyama S, Eizawa A, Arashiba K, Nakajima K, Nishibayashi Y. Dalton Trans. 2018; 47: 1117
- 6l Sekiguchi Y, Arashiba K, Tanaka H, Eizawa A, Nakajima K, Yoshizawa K, Nishibayashi Y. Angew. Chem. Int. Ed. 2018; 57: 9064
- 6m Sekiguchi Y, Meng F, Tanaka H, Eizawa A, Arashiba K, Nakajima K, Yoshizawa K, Nishibayashi Y. Dalton Trans. 2018; 47: 11322
- 6n Itabashi T, Mori I, Arashiba K, Eizawa A, Nakajima K, Nishibayashi Y. Dalton Trans. 2019; 48: 3182
- 6o Eizawa A, Arashiba K, Egi A, Tanaka H, Nakajima K, Yoshizawa K, Nishibayashi Y. Chem. Asian J. 2019; 14: 2091
- 6p Itabashi T, Arashiba K, Tanaka H, Konomi A, Eizawa A, Nakajima K, Yoshizawa K, Nishibayashi Y. Organometallics 2019; 38: 2863
- 6q Arashiba K, Itabashi T, Nakajima K, Nishibayashi Y. Chem. Lett. 2019; 48: 693
- 7 Ashida Y, Arashiba K, Nakajima K, Nishibayashi Y. Nature 2019; 568: 536
- 8 Ashida Y, Arashiba K, Tanaka H, Egi A, Nakajima K, Yoshizawa K, Nishibayashi Y. Inorg. Chem. 2019; 58: 8927
- 9 Matoba K, Eizawa A, Nishimura S, Arashiba K, Nakajima K, Nishibayashi Y. Synthesis 2018; 50: 1015
- 10 Watson PL, Tulip TH, Williams I. Organometallics 1990; 9: 1999
- 11 Weatherburn MW. Anal. Chem. 1967; 39: 971
For recent selected reviews, see: