Synlett 2020; 31(01): 13-20
DOI: 10.1055/s-0039-1690215
account
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Enantioenriched Tetra-ortho-3,3′-substituted Biaryls by Small-Molecule-Catalyzed Noncanonical Polyketide Cyclizations

Reto M. Witzig
,
We gratefully acknowledge the Swiss National Science Foundation (Grant Numbers BSSGI0-155902/1 and 175746), the University of Basel, and the NCCR Molecular Systems Engineering for financial support.
Further Information

Publication History

Received: 12 September 2019

Accepted after revision: 07 October 2019

Publication Date:
22 October 2019 (online)


Abstract

The arene-forming aldol condensation is a fundamental reaction in the biosynthesis of aromatic polyketides. Precisely controlled by the polyketide synthases, the highly reactive poly-β-carbonyl substrates are diverged into numerous aromatic natural products by selective cyclization reactions; a fascinating biosynthetic strategy that sparked our interest to investigate atroposelective aldol condensations. In this Account, we contextualize and highlight the ability of small-molecule catalysts to selectively convert noncanonical hexacarbonyl substrates in a double arene-forming aldol condensation resulting in the atroposelective synthesis of tetra-ortho-3,3′-substituted biaryls. The hexacarbonyl substrates were obtained by a fourfold ozonolysis enabling a late-stage introduction of all carbonyl functions in one step. Secondary amine catalysts capable of forming an extended hydrogen-bonding network triggered the noncanonical polyketide cyclization in order to form valuable biaryls in high yields and with stereocontrol of up to 98:2 er.

1 Biosynthesis of Aromatic Polyketides

2 Rotationally Restricted Aromatic Polyketides

3 3,3′-Substituted Binaphthalenes in Catalysis

4 Stereoselective Synthesis of Atropisomers

5 Synthesis of Enantioenriched Tetra-ortho-3,3′-Substituted Biaryls by the Atroposelective Arene-Forming Aldol Condensation

6 Conclusion

 
  • References and Notes

  • 1 Staunton J, Weissman KJ. Nat. Prod. Rep. 2001; 18: 380
  • 2 Hertweck C. Angew. Chem. Int. Ed. 2009; 48: 4688
  • 3 Crawford JM, Townsend CA. Nat. Rev. Microbiol. 2010; 8: 879
  • 4 Jenke-Kodama H, Sandmann A, Müller R, Dittmann E. Mol. Biol. Evol. 2005; 22: 2027
  • 5 Koshla C, Gokhale RS, Jacobsen JR, Cane DE. Annu. Rev. Biochem. 1999; 68: 219
  • 6 Austin MB, Noel JP. Nat. Prod. Rep. 2003; 20: 79
  • 7 Crawford JM, Thomas PM, Scheerer JR, Vagstad AL, Kelleher NL, Townsend CA. Science 2008; 320: 243
  • 8 Crawford JM, Korman TP, Labonte JW, Vagstad AL, Hill EA, Kamari-Bidkorpeh O, Tsai S.-C, Townsend CA. Nature 2009; 461: 1139
  • 9 Walsh CT, Chen H, Keating TA, Hubbard BK, Losey HC, Luo L, Marshall CG, Miller DA, Patel HM. Curr. Opin. Chem. Biol. 2001; 5: 525
  • 10 Wang P, Gao X, Tang Y. Curr. Opin. Chem. Biol. 2012; 16: 362
  • 11 Bode SE, Drochner D, Müller M. Angew. Chem. Int. Ed. 2007; 46: 5916
  • 12 Dagne E, Steglich W. Phytochemistry 1984; 23: 1729
  • 13 Aldemir H, Richarz R, Gulder TA. M. Angew. Chem. Int. Ed. 2014; 53: 8286
  • 14 Girol CG, Fisch KM, Heinekamp T, Günther S, Hüttel W, Piel J, Brakhage AA, Müller M. Angew. Chem. Int. Ed. 2012; 51: 9788
  • 15 Mazzaferro LS, Hüttel W, Fries A, Müller M. J. Am. Chem. Soc. 2015; 137: 12289
  • 16 Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, Wilkinson B, Hutchings MI. Chem. Sci. 2017; 8: 3218
  • 17 Feng Z, Kallifidas D, Brady SF. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 12629
    • 18a Miyashita A, Yasuada A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R. J. Am. Chem. Soc. 1980; 102: 7932
    • 18b Akutagawa S. Appl.Catal. A 1995; 128: 171
  • 19 Bao J, Wulff WD. J. Am. Chem. Soc. 1993; 115: 3814
  • 20 Hoffmann S, Majeed A, List B. Angew. Chem. Int. Ed. 2005; 44: 7424
  • 21 Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 2003; 125: 5139
  • 22 Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
  • 23 Zamfir A, Schenker S, Freund M, Tsogoeva S. Org. Biomol. Chem. 2010; 8: 5262
  • 24 Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
  • 25 Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
  • 26 Wipf P, Jung J.-K. J. Org. Chem. 2000; 65: 6319
    • 27a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 27b Various 3,3′-substituted-BINOLs and corresponding chiral phosphoric acids are now commercially available from Solvias.
  • 28 Kitamura M, Arimura Y, Shirakawa S, Maruoka K. Tetrahedron Lett. 2008; 49: 2026
    • 29a Bringmann G, Mortimer AJ. P, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 29b Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
  • 30 Baudoin O. Eur. J. Org. Chem. 2005; 4223
  • 31 Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
  • 32 Miyano S, Fukushima H, Handa S, Ito H, Hashimoto H. Bull. Chem. Soc. Jpn. 1988; 61: 3249
  • 33 Andrus MB, Asgari D, Scafani JA. J. Org. Chem. 1997; 62: 9365
  • 34 Nicolaou KC, Natarajan S, Li H, Jain NF, Hughes R, Solomon ME, Ramanjulu JM, Boddy CN. C, Takayanagi M. Angew. Chem. Int. Ed. 1998; 37: 2708
  • 35 Hayashi T, Hayashizaki K, Kiyoi T, Ito Y. J. Am. Chem. Soc. 1988; 110: 8153
  • 36 Yin J, Buchwald SL. J. Am. Chem. Soc. 2000; 122: 12051
  • 37 Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
  • 38 Gustafson JL, Lim D, Miller SJ. Science 2010; 328: 1251
  • 39 Yao Q.-J, Zhang S, Zhan B.-B, Shi B.-F. Angew. Chem. Int. Ed. 2017; 57: 6617
  • 40 Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
  • 41 Bhat V, Wang S, Stoltz BM, Virgil SC. J. Am. Chem. Soc. 2013; 135: 16829
  • 42 Link A, Sparr C. Chem. Soc. Rev. 2018; 47: 3804
  • 43 Tanaka K. Chem. Asian J. 2009; 4: 508
  • 44 Witzig RM, Lotter D, Fäseke VC, Sparr C. Chem. Eur. J. 2017; 23: 12960
  • 45 Fäseke VC, Witzig RM, Link A, Lotter D, Sparr C. Chimia 2017; 71: 596
  • 46 Link A, Sparr C. Angew. Chem. Int. Ed. 2014; 53: 5458
  • 47 Lotter D, Neuburger M, Rickhaus M, Häussinger D, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 2920
  • 48 Fäseke VC, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 7261
  • 49 Lotter D, Castrogiovanni A, Neuburger M, Sparr C. ACS Cent. Sci. 2018; 4: 656
  • 50 Witzig RM, Fäseke VC, Sparr C. Nat. Catal. 2019; 2: 925
  • 51 Yoon TP, Jacobsen EN. Science 2003; 299: 1691