Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(15): 1810-1814
DOI: 10.1055/s-0039-1690497
DOI: 10.1055/s-0039-1690497
letter
Formation of Acetals and Ketals from Carbonyl Compounds: A New and Highly Efficient Method Inspired by Cationic Palladium
Further Information
Publication History
Received: 25 June 2019
Accepted after revision: 09 July 2019
Publication Date:
23 July 2019 (online)
Abstract
The development of a new, highly efficient, and simple method for masking carbonyl groups as acetals and ketals is described. This methodology relies on the nature of the palladium catalyst to direct the acetalization/ketalization reaction. This new protocol is mild and proceed with a very low catalyst loading at ambient temperatures. The method has been extended to a wide variety of different carbonyl compounds with various steric encumbrances to form the corresponding acetals and ketals in excellent yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690497.
- Supporting Information
-
References and Notes
- 1 Meskens FA. J. Synthesis 1981; 501
- 2 Greene TW, Wuts PG. M. Protecting Groups in Organic Synthesis . 3rd ed Wiley-Interscience; New York: 1999
- 3 Cameron AF. B, Hunt JS, Oughton JF, Wilkinson PA, Wilson BM. J. Chem. Soc. 1953; 3864
- 4 Wenkert E, Goodwin TE. Synth. Commun. 1977; 7: 409
- 5a Taylor EC, Chiang C.-S. Synthesis 1977; 467
- 5b Mizugake T, Ebitani K, Kaneda K. Tetrahedron Lett. 2001; 42: 8329
- 6 Ranu BC, Jana R, Samanta S. Adv. Synth. Catal. 2004; 346: 446
- 7 Gregg BT, Golden KC, Quinn JF. Tetrahedron 2008; 64: 3287
- 8 Smith BM, Graham AE. Tetrahedron Lett. 2006; 47: 9317
- 9 Smith BM, Graham AE. Tetrahedron Lett. 2007; 48: 4891
- 10 Ishihara K, Karumi Y, Kubota M, Yamamoto H. Synlett 1996; 839
- 11 Leonard NM, Oswald MC, Freiberg DA, Nattier BA, Smith RC, Mohan RS. J. Org. Chem. 2002; 67: 5202
- 12 Smith AB. III, Fukui M, Vaccaro HA, Empfield JR. J. Am. Chem. Soc. 1991; 113: 2071
- 13 Gemal AL, Luche J.-L. J. Org. Chem. 1979; 44: 4187
- 14 Hamada N, Kazahaya K, Shimizu H, Sato T. Synlett 2004; 1074
- 15 Clerici A, Pastori N, Porta O. Tetrahedron 1998; 54: 15679
- 16 Banik BK, Chapa M, Marquez J, Cardona M. Tetrahedron Lett. 2005; 46: 2341
- 17 Kumar R, Chakraborti AK. Tetrahedron Lett. 2005; 46: 8319
- 18 Kotke M, Schreiner PR. Tetrahedron 2006; 62: 434
- 19 Lee SH, Lee JH, Yoon CM. Tetrahedron Lett. 2002; 43: 2699
- 20 Babak K, Miri AA. Chem. Lett. 1999; 1199
- 21 Bornstein J, Bedell SF, Drummond PE, Kopsloski CL. J. Am. Chem. Soc. 1956; 78: 83
- 22 Firouzabadi H, Iranpoor N, Karimi B. Synlett 1999; 321
- 23 De S K, Gibbs RA. Tetrahedron Lett. 2004; 45: 8141
- 24 Velusamy S, Punniyamurthy T. Tetrahedron Lett. 2004; 45: 4917
- 25 Gopinath R, Hasque SJ, Patel BK. J. Org. Chem. 2002; 67: 5842
- 26 Procuranti B, Connon SJ. Org. Lett. 2008; 10: 4935
- 27 Yang J, Cooper-Vanosdell C, Mensah EA, Nguyen HM. J. Org. Chem. 2008; 73: 794
- 28 Mensah EA, Azzarelli JM, Nguyen HM. J. Org. Chem. 2009; 74: 1650
- 29 Zhang X, Han X, Chen J, Lu X. Tetrahedron 2017; 73: 1541
- 30 Nishikata T, Abela AR, Huang S, Lipshutz BH. Beilstein J. Org. Chem. 2016; 12: 1040
- 31 Mensah EA, Reyes FR, Standiford ES. Catalysts 2016; 6: 27
- 32 Yi H, Niu L, Wang S, Liu T, Singh AK, Lei A. Org. Lett. 2017; 19: 122
- 33 Yu X, Ye S, Wu J. Adv. Synth. Catal. 2010; 352: 2050
- 34 Briones JF, Davies HM. L. Org. Lett. 2011; 13: 3984
- 35 Jiang L, Yu X, Fang B, Wu J. Org. Biomol. Chem. 2012; 10: 8102
- 36 Das R, Chakraborty D. Synthesis 2011; 1621
- 37 Rao VK, Rao MS, Jain N, Panwar J, Kumar A. Org. Med. Chem. Lett. 2011; 1: 10
- 38 Zheng D, Li S, Wu J. Org. Lett. 2012; 14: 2655
- 39 Pérez-Lorenzo M. J. Phys. Chem. Lett. 2012; 3: 167
- 40 Sawai K, Tatumi R, Nakahodo T, Fujihara H. Angew. Chem. Int. Ed. 2008; 47: 6917
- 41 Sawoo S, Srimani D, Dutta P, Lahiri R, Sarkar A. Tetrahedron 2009; 65: 4367
- 42 Lu F, Ruiz J, Astruc D. Tetrahedron Lett. 2004; 45: 9443
- 43 4-Bromobenzaldehyde Dimethyl Acetal (1); Typical Procedure An oven-dried, argon-flushed, 10 mL round-bottomed flask was charged with 4-bromobenzaldehyde (92.5 mg, 0.5 mmol, 1.0 equiv) and HC(OMe)3 (0.16 mL, 1.5 mmol, 3.0 equiv). To this mixture was added a preformed solution of Pd(PhCN)2(OTf)2 (0.2 mL, 0.0025 mmol, 0.5 mol%), generated in situ from Pd(PhCN)2Cl2 (0.96 mg, 0.0025 mmol, 0.5 mol%) and AgOTf (1.29 mg, 0.005 mmol, 1 mol%) in anhyd CH2Cl2 (0.2 mL). The resulting mixture was stirred at r.t. until the reaction was complete (TLC) then directly purified by flash column chromatography [silica gel, hexanes–EtOAc (4:1) + Et3N (1%)] to give a colorless oil; yield: 112 mg (97%). IR (film): 3005, 2936, 1593, 1485, 1398, 1349, 1205, 1099, 1051, 1011, 984 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.48 (d, J = 8.5 Hz, 2 H), 7.31 (d, J = 8.3 Hz, 2 H), 5.34 (s, 1 H), 3.29 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 137.1, 131.3, 128.5, 122.5, 102.2, 52.5. Acetophenone Dimethyl Acetal (29) Colorless oil; yield: 74.8 mg (90%). IR (film): 3002, 2991, 2943, 2831, 1447, 1372, 1276, 1197, 1146, 1091, 1040, 909 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.54–7.52 (m, 1 H), 7.52–7.51 (m, 1 H), 7.38–7.34 (m, 2 H), 7.31 – 7.27 (m, 1 H), 3.21 (s, 6 H), 1.56 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 142.9, 128.0, 127.5, 126.2, 101.6, 48.9, 26.1.