Synthesis 2019; 51(23): 4338-4347
DOI: 10.1055/s-0039-1690679
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in the Synthesis of 1,2,5-Thiadiazoles and 2,1,3-Benzothiadiazoles

a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
b   Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russian Federation   Email: orakitin@ioc.ac.ru
› Author Affiliations
Further Information

Publication History

Received: 09 August 2019

Accepted after revision: 20 August 2019

Publication Date:
23 September 2019 (online)


Abstract

The fast-growing interest in 1,2,5-thiadiazoles and their fused analogues including 2,1,3-benzothiadiazoles in recent years as important compounds in materials science and biomedicine has led to great progress in the synthesis of these heterocyclic systems. In this short review, the development of known procedures together with novel reactions is covered. New starting materials, unknown and unexpected transformations for the construction of the thiadiazole ring are emphasized.

1 Introduction

2 Synthesis of Monocyclic 1,2,5-Thiadiazoles

2.1 From 1,2-Diamines, vic-Dioximes and Related Compounds

2.2 From Alkyl Aryl (Hetaryl) Ketoximes and Tetrasulfur Tetranitride

2.3 By Condensation Reactions

2.4 From Other Heterocycles

3 Synthesis of Fused 1,2,5-Thiadiazoles

3.1 From ortho-Phenylenediamines and Related Compounds

3.2 From ortho-Aminonitroso and ortho-Aminonitro Derivatives

3.3 By Condensation Reactions

3.4 By Chalcogen Exchange in 1,2,5-Oxa- and 1,2,5-Selenadiazoles

3.5 Miscellaneous Methods

4 Conclusions

 
  • References

    • 1a Biju P, Taveras A, Yu Y, Zheng J, Chao J, Rindgen D, Jakway J, Hipkin RW, Fossetta J, Fan X, Fine J, Qiu H, Merritt JR, Baldwin JJ. Bioorg. Med. Chem. Lett. 2008; 18: 228
    • 1b Biju P, Taveras A, Yu Y, Zheng J, Hipkin RW, Fossetta J, Fan X, Fine J, Lundell D. Bioorg. Med. Chem. Lett. 2009; 19: 1434
    • 1c Rosenbaum AI, Cosner CC, Mariani CJ, Maxfield FR, Wiest O, Helquist P. J. Med. Chem. 2010; 53: 5281
    • 1d Oliveira FF. D, Santos DC. B. D, Lapis AA. M, Corrêa JR, Gomes AF, Gozzo FC, Moreira PF. Jr, de Oliveira VC, Quina FH, Neto BA. D. Bioorg. Med. Chem. Lett. 2010; 20: 6001
    • 1e Neto BA. D, Corrêa JR, Carvalho PH. P. R, Santos DC. B. D, Guido BC, Gatto CC, de Oliveira HC. B, Fasciotti M, Eberlin MN, da Silva EN. Jr. J. Braz. Chem. Soc. 2012; 23: 770
    • 1f Maheshwari A, Rao PS. S, Messer WS. Jr. Bioorg. Med. Chem. Lett. 2014; 22: 1838
  • 2 Garo F, Häner R. Eur. J. Org. Chem. 2012; 2801
  • 3 Neto BA. D, Carvalho PH. P. R, Correa JR. Acc. Chem. Res. 2015; 48: 1560
  • 4 Konstantinova LS, Knyazeva EA, Gatilov YuV, Zlotin SG, Rakitin OA. Russ. Chem. Bull. 2018; 67: 95
  • 5 Reddy C, Bisht N, Parella R, Babu SA. J. Org. Chem. 2016; 81: 12143
    • 6a Qian G, Zhong Z, Luo M, Yu D, Zhang Z, Wang ZY, Ma D. Adv. Mater. 2009; 21: 111
    • 6b Du X, Qi J, Zhang Z, Ma D, Wang ZY. Chem. Mater. 2012; 24: 2178
    • 6c Wu Z, Yao W, London AE, Azoulay JD, Ng TN. Adv. Funct. Mater. 2018; 28: 1800391
    • 7a Yang G, Di C.-a, Zhang G, Zhang J, Xiang J, Zhang D, Zhu D. Adv. Funct. Mater. 2013; 23: 1671
    • 7b Steckler TT, Henriksson P, Mollinger S, Lundin A, Salleo A, Andersson MR. J. Am. Chem. Soc. 2014; 136: 1190
    • 7c An C, Li M, Marszalek T, Li D, Berger R, Pisula W, Baumgarten M. Chem. Mater. 2014; 26: 5923
    • 7d Casey A, Han Y, Fei Z, White AJ. P, Anthopoulos TD, Heeney M. J. Mater. Chem. C 2015; 3: 265
    • 7e Cai Z, Zhang N, Awais MA, Filatov AS, Yu L. Angew. Chem. Int. Ed. 2018; 57: 6442
    • 8a Knyazeva EA, Rakitin OA. Russ. Chem. Rev. 2016; 85: 1146
    • 8b Knyazeva EA, Wu WJ, Chmovzh TN, Robertson N, Woollins JD, Rakitin OA. Sol. Energy 2017; 144: 134
    • 8c Ferdowsi P, Saygili Y, Zhang W, Edvinson T, Kavan L, Mokhtari J, Zakeeruddin SM, Grätzel M, Hagfeldt A. ChemSusChem 2018; 11: 494
    • 8d Rodrigues RR, Cheema H, Delcamp JH. Angew. Chem. Int. Ed. 2018; 57: 5472
    • 8e Wang K, Xu Z, Geng Y, Li H, Lin C, Mi L, Guo X, Zhang M, Li Y. Org. Electronics 2019; 64: 54
    • 8f Chmovzh TN, Knyazeva EA, Tanaka E, Popov VV, Mikhalchenko LV, Robertson N, Rakitin OA. Molecules 2019; 24: 1588
  • 9 Ellinger S, Graham KR, Shi P, Farley RT, Steckler TT, Brookins RN, Taranekar P, Mei J, Padilha LA, Ensley TR, Hu H, Webster S, Hagan DJ, Van Stryland EW, Schanze KS, Reynolds JR. Chem. Mater. 2011; 23: 3805
    • 10a Todress ZV. Chalcogenadiazoles: Chemistry and Applications . CCR Press/Taylor & Francis; London: 2012
    • 10b Koutentis PA. In Comprehensive Heterocyclic Chemistry III, Vol. 5. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 516-564
    • 10c Konstantinova LS, Knyazeva EA, Rakitin OA. Org. Prep. Proced. Int. 2014; 46: 475
    • 10d Rakitin OA, Zibarev AV. Asian J. Org. Chem. 2018; 7: 2397
    • 10e Koutentis PA. In Science of Synthesis, Vol. 13. Storr RC, Gilchrist TL. Thieme; Stuttgart: 2003: 297-348
  • 11 Neto BA. D, Lapis AA. M, da Silva Júnior EN, Dupont J. Eur. J. Org. Chem. 2013; 228
  • 12 Chen L, Feng L, Yang M, Dillon MP, Lai Y. Patent US20100152203, 2010
  • 13 Strunskaya EI, Bredikhina ZA, Azancheev NM, Bredikhin AA. Russ. J. Org. Chem. 2001; 37: 1330
  • 14 Philipp DM, Muller R, Goddard WA, Abboud KA, Mullins MJ, Snelgrove RV, Athey PS. Tetrahedron Lett. 2004; 45: 5441
    • 15a Pilgram K. J. Org. Chem. 1970; 35: 1165
    • 15b Anderson RJ, Leippe MM. Patent US4544400, 1985
  • 16 Konstantinova LS, Knyazeva EA, Obruchnikova NV, Vasilieva NV, Irtegova IG, Nelyubina YV, Bagryanskaya IYu, Shundrin LA, Sosnovskaya ZYu, Zibarev AV, Rakitin OA. Tetrahedron 2014; 70: 5558
  • 17 Kryshenko FI, Knyazeva EA, Konstantinova LS, Rakitin OA. Russ Chem. Bull. 2016; 65: 2678
  • 18 Uchiyama Y, Dolphin JS, Harlow RL, Marshall WJ, Arduengo AJ. III. Aust. J. Chem. 2014; 67: 405
  • 19 McManus GD, Rawson JM, Feeder N, van Duijn J, Mcinnes EJ. L, Novoa JJ, Burriel R, Palacio F, Oliete P. J. Mater. Chem. 2001; 11: 1992
  • 20 Zissimou GA, Kourtellaris A, Manoli M, Koutentis PA. J. Org. Chem. 2018; 83: 9391
    • 21a Kim KJ, Kim K. Heterocycles 2007; 71: 855
    • 21b Kim KJ, Kim K. Tetrahedron 2007; 63: 5014
  • 22 Biswas S, Yap GP. A, Dey K. Polyhedron 2009; 28: 3094
  • 23 Arroyo NR, Rozas MF, Vázquez P, Romanelli GP, Mirífico MV. Synthesis 2016; 48: 1344
  • 24 Schüttler C, Li-Bӧhmer Z, Harms K, von Zezschwitz P. Org. Lett. 2013; 15: 800
  • 25 Koutentis PA. Molecules 2005; 10: 346
  • 26 Kalogirou AS, Kourtellaris A, Koutentis PA. Org. Lett. 2016; 18: 4056
    • 27a Burmester C, Faust R. Synthesis 2008; 1179
    • 27b Mikhailovskaya TF, Makarov AG, Selikhova NYu, Makarov AYu, Pritchina EA, Bagryanskaya IYu, Vorontsova EV, Ivanov ID, Tikhova VD, Gritsan NP, Slizhov YG, Zibarev AV. J. Fluorine Chem. 2016; 183: 44
    • 27c Prima DO, Vorontsova EV, Makarov AG, Makarov AYu, Bagryanskaya IYu, Mikhailovskaya TF, Slizhov YuG, Zibarev AV. Mendeleev Commun. 2017; 27: 439
    • 27d Nakamura T, Okazaki S, Arakawa N, Satou M, Endo M, Murata Y, Wakamiya A. J. Photopolym. Sci. Technol. 2017; 30: 561
    • 27e Hu Y.-X, Zhao G.-W, Dong Y, Lü Y.-L, Li X, Zhang D.-Y. Dyes Pigm. 2017; 137: 569
  • 28 Tam TL, Li H, Wei F, Tan KJ, Kloc C, Lam YM, Mhaisalkar SG, Grimsdale AC. Org. Lett. 2010; 12: 3340
  • 29 Lei T, Zhou Y, Cheng C.-Y, Cao Y, Peng Y, Bian J, Pei J. Org. Lett. 2011; 13: 2642
  • 30 Li H, Zhou F, Tam TL. D, Lam YM, Mhaisalkar SG, Su G, Grimsdale AC. J. Mater. Chem. C 2013; 1: 1745
    • 31a Steckler TT, Abboud KA, Craps M, Rinzler AG, Reynolds JR. Chem. Commun. 2007; 4904
    • 31b Gu C, Hu W, Yao J, Fu H. Chem. Mater. 2012; 25: 2178
    • 31c Xia D, Wang X.-Y, Guo X, Baumgarten M, Li M, Müllen K. Cryst. Growth Des. 2016; 16: 7124
  • 32 Braverman S, Cherkinsky M. Tetrahedron Lett. 1997; 38: 487
  • 33 Linder T, Badiola E, Baumgartner T, Sutherland TC. Org. Lett. 2010; 12: 4520
  • 34 Bashirov DA, Sukhikh TS, Kuratieva NV, Naumov DYu, Konchenko SN, Semenov NA, Zibarev AV. Polyhedron 2012; 42: 168
    • 35a Gritsan NP, Zibarev AV. Russ. Chem. Bull. 2011; 60: 2131
    • 35b Lonchakov AV, Rakitin OA, Gritsan NP, Zibarev AV. Molecules 2013; 18: 9850
  • 36 Yavolovskii AA, Kishichenko VD, Olijnichenko OA, Ivanov EI. Russ. J. Gen. Chem. 2005; 75: 457
  • 37 Nagamatsu T, Islam R, Ashida N. Heterocycles 2007; 72: 573
  • 38 Konstantinova LS, Knyazeva EA, Obruchnikova NV, Gatilov YuV, Zibarev AV, Rakitin OA. Tetrahedron Lett. 2013; 54: 3075
  • 39 Xie Y, Shuku Y, Matsushita MM, Awaga K. Chem. Commun. 2014; 50: 4178
  • 40 Taydakov IV, Vashchenko AA, Lyssenko KA, Konstantinova LS, Knyazeva EA, Obruchnikova NV. ARKIVOC 2017; (iii): : 205
  • 41 Pushkarevsky NA, Lonchakov AV, Semenov NA, Lork E, Buravov LI, Konstantinova LS, Silber GT, Robertson N, Gritsan NP, Rakitin OA, Woollins JD, Yagubskii EB, Beckmann J, Zibarev AV. Synth. Met. 2012; 162: 2267
  • 42 Konstantinova LS, Knyazeva EA, Rakitin OA. Molecules 2015; 20: 14522
    • 43a Lork E, Mews R, Shakirov MM, Watson PG, Zibarev AV. Eur. J. Inorg. Chem. 2001; 2123
    • 43b Makarov AY, Bagryanskaya IY, Blockhuys F, Alsenoy CV, Gatilov YuV, Knyazev VV, Maksimov AM, Mikhalina TV, Platonov VE, Shakirov MM, Zibarev AV. Eur. J. Inorg. Chem. 2003; 77
    • 43c Makarov AG, Selikhova NYu, Makarov AYu, Malkov VS, Bagryanskaya IYu, Gatilov YuV, Knyazev AS, Slizhov YuG, Zibarev AV. J. Fluorine Chem. 2014; 165: 123
  • 44 Lork E, Mews R, Shakirov MM, Watson PG, Zibarev AV. J. Fluorine Chem. 2002; 115: 165
  • 45 Semenov NA, Pushkarevsky NA, Lonchakov AV, Bogomyakov AS, Pritchina EA, Suturina EA, Gritsan NP, Konchenko SN, Mews R, Ovcharenko VI, Zibarev AV. Inorg. Chem. 2010; 49: 7558
  • 46 Konstantinova LS, Knyazeva EA, Nefyodov AA, Camacho PS, Ashbrook SE. M, Woollins JD, Zibarev AV, Rakitin OA. Tetrahedron Lett. 2015; 56: 1107
  • 47 Makarov AYu, Zhivonitko VV, Makarov AG, Zikirin SB, Bagryanskaya IYu, Bagryansky VA, Gatilov YuV, Irtegova IG, Shakirov MM, Zibarev AV. Inorg. Chem. 2011; 50: 3017
  • 48 Hinsberg O. Ber. Dtsch. Chem. Ges. 1889; 22: 2895
    • 49a Konstantinova LS, Rakitin OA. Mendeleev Commun. 2009; 19: 55
    • 49b Konstantinova LS, Rakitin OA. Russ. Chem. Rev. 2014; 83: 225