RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2019; 30(18): 2091-2095
DOI: 10.1055/s-0039-1690696
DOI: 10.1055/s-0039-1690696
letter
Preparation of Bicyclic Ketal Skeletons with Aldehyde and α-Ketone Acid through Cascade Friedel–Crafts Reaction and Stereoselective Acetalization in One Pot
We are grateful for the financial support from the Sichuan Science and Technology Program (No. 2019JDRC0106).Weitere Informationen
Publikationsverlauf
Received: 19. Juli 2019
Accepted after revision: 17. September 2019
Publikationsdatum:
07. Oktober 2019 (online)
Abstract
Bicyclic ketal skeletons are important structure fragments that are frequently contained in natural products. A novel tandem Friedel–Crafts reaction and subsequent stereoselective acetalization were developed with readily available aldehyde and ketone acid. The reaction proceeded smoothly in the presence of catalytic Brønsted acid and afforded the corresponding product with moderate yield and high stereoselectivity.
Key words
bicyclic ketal skeletons - Friedel–Crafts reaction - tandem reaction - α-ketone acid - Brønsted acid - acetalizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690696.
- Supporting Information
-
References and Notes
- 1a Purusotam B, Shigetoshi K, Mineo S, Tsuneo N. Planta Med. 1994; 60: 507
- 1b Norio A, Kazuhiro K, Shin-ichiro S. Chem. Pharm. Bull. 1983; 31: 3765
- 2 Liu SJ, Liao ZX, Liu C, Yao GY, Wang HS. Phytochem. Lett. 2014; 9: 11
- 3 Qin DP, Pan DB, Xiao W, Lo HB, Yang B, Yao XJ, Dai Y, Yu Y, Yao XS. Org. Lett. 2018; 20: 453
- 4a Montagnon T, Tofi M, Vassilikogiannakis G. Acc. Chem. Res. 2008; 41: 1001
- 4b Carroll RJ, Leisch H, Rochon L, Hudlicky T, Cox DP. J. Org. Chem. 2009; 74: 747
- 4c Tian T, Li L, Xue J, Zhang J, Li Y. J. Org. Chem. 2015; 80: 4189
- 4d Ono F, Takenaka H, Eguchi Y, Endo M, Sato T. Synlett 2009; 487
- 4e Firouzabadi H, Iranpoor N, Karimi B. Synlett 1999; 321
- 4f Yi H, Niu L, Wang S, Liu T, Singh AK, Lei A. Org. Lett. 2017; 19: 122
- 4g Berliner MA, Belecki K. J. Org. Chem. 2005; 70: 9618
- 4h Jadhav BG, Samant SD. Synlett 2014; 25: 1591
- 5a Showler AJ, Darley PA. Chem. Rev. 1967; 67: 427
- 5b Nieuwland JA, Vogt RR, Foohey WL. J. Am. Chem. Soc. 1930; 52: 1018
- 6a Grabowski J, Granda JM, Jurczak J. Org. Biomol. Chem. 2018; 16: 3114
- 6b Barbasiewicz M, Mąkosza M. Org. Lett. 2006; 8: 3745
- 7a Padwa A, Fryxell GE, Zhi L. J. Am. Chem. Soc. 1990; 112: 3100
- 7b Muthusamy S, Babu SA, Gunanathan C, Ganguly B, Suresh E, Dastidar P. J. Org. Chem. 2002; 67: 8019
- 8 Francisco CG, Herrera AJ, Suárez E. J. Org. Chem. 2002; 67: 7439
- 9 Sofikiti N, Tofi M, Montagnon T, Vassilikogiannakis G, Stratakis M. Org. Lett. 2005; 7: 2357
- 10a Citterio A, Gandolfi M, Piccolo O, Filippini L, Tinucci L, Valoti E. Synthesis 1984; 760
- 10b Cai L, Zhao Y, Huang T, Meng S, Jia X, Chan AS. C, Zhao J. Org. Lett. 2019; 21: 3538
- 10c Vetica F, Pelosi A, Gambacorta A, Loreto MA, Miceli M, Gasperi T. Eur. J. Org. Chem. 2014; 1899
- 10d Ishibashi H, Takagaki K, Imada N, Ikeda M. Tetrahedron 1994; 50: 10215
- 11a Harada T, Inoue A, Wada I, Uchimura J, Tanaka S, Oku A. J. Am. Chem. Soc. 1993; 115: 7665
- 11b Pastine SJ, Sames D. Org. Lett. 2005; 7: 5429
- 11c Cox DJ, Smith MD, Fairbanks AJ. Org. Lett. 2010; 12: 1452
- 11d Sau A, Santra A, Misra AK. Synlett 2012; 23: 2341
- 12 General Procedure for the Preparation of 3a–q To a stirred solution of α-arylaldehyde 1 (0.2 mmol) and TfOH (0.06 mmol) in toluene (2 mL, 0.1 M) was added arylglyoxylic acid 2 (or hydroxyl acetone 5a) (0.24 mmol, 1.2 equiv) at room temperature, then the reaction mixture was stirred for 12 h at 50 °C under nitrogen atmosphere. After completion of the reaction (TLC), the mixture was cooled to room temperature, diluted with ethyl acetate (10 mL), washed with brine (3 × 5 mL), dried over anhydrous Na2SO4, filtered, and the solvent was removed by rotary evaporator. The crude products were purified by column chromatography (eluting with petroleum ether/DCM/EtOAc) to give bicyclic ketal lactone derivative 3 (or 6a). In some cases the products should be further crystallized from DCM containing traces of hexane to give pure compounds. 7,8-Dimethoxy-1,5,5-trimethyl-4,5-dihydro-1,4-epoxybenzo[d]oxepin-2(1H)-one (3a) Yield: 44.5 mg (80%). 1H NMR (400 MHz, CDCl3): δ = 6.77 (s, 1 H), 6.71 (s, 1 H), 5.58 (s, 1 H), 3.91 (s, 6 H), 1.87 (s, 3 H), 1.42 (s, 3 H), 1.35 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 173.28 (s), 150.35 (s), 147.92 (s), 133.50 (s), 124.59 (s), 109.78 (s), 107.45 (s), 106.58 (s), 76.21 (s), 56.11 (d, J = 2.3 Hz), 38.04 (s), 28.84 (s), 22.82 (s), 16.87 (s). HRMS (ESI): m/z neutral mass calcd for C15H18O5: 278.11542; found: 279.12291 [M + H].
- 13 CCDC 1956192 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 14 Procedure for the Conversion of 3a into 6a A solution of LiAlH4 (4.6 mg, 0.12 mmol, 1.2 equiv) in anhydrous THF (5 mL) was cooled to –20 °C, and a solution of 3a (27.8 mg, 0.1 mmol) in anhydrous THF was added slowly. The reaction mixture was stirred at –20 °C for 3 h. The mixture was diluted with HCl (6 M, 5 mL) and extracted with ethyl acetate (2 × 50 mL), and the organic layer was separated, washed with saturated sodium bicarbonate (1 × 50 mL) and brine (1 × 50 mL), dried over anhydrous sodium sulfate and evaporated under reduced pressure. The residue was purified by flash chromatography over silica gel with 20% EtOAc/petroleum ether as eluent to furnish 6a (15.8 mg, 47% yield) as a white solid. Yield: 14.2 mg (54%). 1H NMR (400 MHz, CDCl3): δ = 6.77 (s, 1 H), 6.65 (s, 1 H), 5.24 (s, 1 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 3.82 (d, J = 6.2 Hz, 1 H), 3.58 (d, J = 6.2 Hz, 1 H), 1.79 (s, 3 H), 1.31 (s, 3 H), 1.28 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 148.71 (s), 146.94 (s), 134.18 (s), 131.47 (s), 109.85 (s), 108.42 (s), 105.97 (s), 79.22 (s), 77.49 (s), 56.06 (d, J = 6.7 Hz), 40.64 (s), 28.70 (s), 24.08 (s), 18.94 (s). HRMS (ESI): m/z neutral mass calcd for C15H20O4: 264.13616; found: 265.14328 [M + H] and 287.12833 [M + Na].