RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2019; 30(18): 2096-2100
DOI: 10.1055/s-0039-1690697
DOI: 10.1055/s-0039-1690697
letter
Silver-Promoted Versatile Cross-Dehydrogenative Coupling of Quinaldine with Usual Ethers
Financial support from the Shandong Provincial Natural Science Foundation (Grant numbers ZR2016HM44, ZR2016BQ31, and ZR2016JL009), the Shandong Key Research Program (Grant number 2017GSF218061), the Major Program of Shandong Province Natural Science Foundation (Grant number ZR2017ZC0529) of China and University of Jinan is gratefully acknowledged.Weitere Informationen
Publikationsverlauf
Received: 01. Juli 2019
Accepted after revision: 18. September 2019
Publikationsdatum:
07. Oktober 2019 (online)
Abstract
The application of small molecules as synthetic blocks is a field of great meaning and full of challenges, especially the use of inert ether molecules, such as THF as starting materials. A versatile and easily handled cross-dehydrogenative coupling between ethers and quinaldine is reported here. Compared to the developed reaction, Selectfluor is used as a mild oxidant, and a variety of functional groups are tolerated. Nitrogen protection, anhydrous systems, and external base are not needed, making this method a convenient route to functional heterocycles.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690697.
- Supporting Information
-
References and Notes
- 1a Zhang Y.-F, Shi Z.-J. Acc. Chem. Res. 2019; 52: 161
- 1b Biffis A, Centomo P, Zotto AD, Zecca M. Chem. Rev. 2018; 118: 2249
- 1c Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
- 1d Choi J, Fu GC. Science 2017; 356: eaaf7230
- 1e Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 2a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 2b Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700
- 2c Bietti M. Angew. Chem. Int. Ed. 2018; 57: 16618
- 2d Gensch T, James M, Dalton T, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 2296
- 2e Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 2f Kim D.-S, Park W.-J, Jun C.-H. Chem. Rev. 2017; 117: 8977
- 3a Parvatkar PT, Manetsch R, Banik BK. Chem. Asian J. 2019; 14: 6
- 3b Tang S, Zeng L, Lei A. J. Am. Chem. Soc. 2018; 140: 13128
- 3c Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 3d Kuhl N, Hopkinson MN, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 8230
- 3e Scheuermann CJ. Chem. Asian J. 2010; 5: 436
- 3f Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 4 Solvents as Reagents in Organic Synthesis. Wu X.-F. Wiley-VCH; Weinheim: 2018
- 5 For review, see: Phillips AM. F, Pombeiro AJ. L. ChemCatChem 2018; 10: 3354
- 6a Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
- 6b Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
- 6c Srinivasulu A, Shantharjun B, Vani D, Ashalu KC, Mohd A, Wencel-Delord J, Colobert F, Reddy KR. Eur. J. Org. Chem. 2018; 1815
- 6d Li G.-X, Hu X, He G, Chen G. ACS Catal. 2018; 8: 11847
- 7 Bosset C, Beucher H, Bretel G, Pasquier E, Queguiner L, Henry C, Vos A, Edwards JP, Meerpoel L, Berthelot D. Org. Lett. 2018; 20: 6003
- 8 Quattrini MC, Fujii S, Yamada K, Fukuyama T, Ravelli D, Fagnonia M, Ryu I. Chem. Commun. 2017; 53: 2335
- 9 Liu S, Liu A, Zhang Y, Wang W. Chem. Sci. 2017; 8: 4044
- 10 For Minisci-type C–H alkylation without metal using carboxylic acids, see: Sutherland DR, Veguillas M, Oates CL, Lee A.-L. Org. Lett. 2018; 20: 6863
- 11 Minisci F, Citterio A, Giordano C. Acc. Chem. Res. 1983; 16: 27
- 12 Okugawa N, Moriyama K, Togo H. Eur. J. Org. Chem. 2015; 4973
- 13 Engle KM, Mei T.-S, Wang X, Yu J.-Q. Angew. Chem. Int. Ed. 2011; 50: 1478
- 14a Fang G, Cong X, Zanoni G, Liu Q, Bi X. Adv. Synth. Catal. 2017; 359: 1422
- 14b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 14c Silver Catalysis in Organic Synthesis . Li C.-J, Bi X. Wiley-VCH; Weinheim: 2019
- 15 Galloway JD, Mai DN, Baxter RD. Org. Lett. 2017; 19: 5772
- 16a Patel NR, Flowers RA. J. Org. Chem. 2015; 80: 5834
- 16b Zhu L, Chen H, Wang Z, Li C. Org. Chem. Front. 2014; 1: 1299
- 17 6-Fluoro-2-methyl-4-(tetrahydrofuran-2-yl)quinoline (3a)To a 35 mL Schlenk tube equipped with a magnetic stir bar was charged 6-fluoro-2-methylquinoline (161 mg, 1.0 mmol, 1.0 equiv), Selectfluor (1.40 g, 4.0 mmol, 4.0 equiv), AgNO3 (42.5 mg, 0.25 mmol, 0.25 equiv), H2O (2.5 mL), and tetrahydrofuran (7.5 mL, THF/H2O = 3:1). After stirring at 50 °C for the indicated time, the reaction mixture was diluted with 5 mL of saturated solution NaHCO3 (5 mL) and extracted with EtOAc (3 × 20 mL). The combined organic extracts were washed with brine (2 × 20 mL), dried over Na2SO4, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product. White solid, 201 mg, 87% yield. 1H NMR (600 MHz, CDCl3): δ = 8.01 (dd, J = 9.1, 5.6 Hz, 1 H), 7.45–7.39 (m, 3 H), 5.42 (t, J = 7.2 Hz, 1 H), 4.21 (td, J = 7.7, 5.7 Hz, 1 H), 4.02 (dd, J = 15.3, 7.2 Hz, 1 H), 2.70 (s, 3 H), 2.57 (dt, J = 14.1, 7.7 Hz, 1 H), 2.11–2.04 (m, 1 H), 2.03–1.96 (m, 1 H), 1.84–1.77 (m, 1 H). 13C NMR (151 MHz, CDCl3): δ = 159.71 (d, J = 246.4 Hz), 158.31 (d, J = 2.6 Hz), 148.69 (d, J = 5.5 Hz), 144.96, 131.66 (d, J = 9.1 Hz), 124.40 (d, J = 9.3 Hz), 118.82 (d, J = 25.3 Hz), 117.93, 106.83 (d, J = 22.6 Hz), 76.73, 68.94, 33.57, 25.91, 25.31. 19F NMR (565 MHz, CDCl3): δ = –113.79 (dd, J = 14.7, 8.6 Hz). HRMS (ESI): m/z calcd for C14H15FNO [M + H]+: 232.1132; found: 232.1132.
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For review and selected examples, see:
For selected reviews, see: