Subscribe to RSS
DOI: 10.1055/s-0039-1690779
Epoxides as Dual-Functionalized Alkylating Reagents in Catellani Reactions for the Assembly of Heterocycles
We are grateful to the National 1000-Youth Talents Plan, the Innovation Team Program of Wuhan University (Program No. 2042017kf0232), start-up funding from Wuhan University, National Natural Science Foundation of China (Grants 21871213, and 21801193), and the China Postdoctoral Science Foundation (No. 2016M602339, H.G.C.) for financial support.Publication History
Received: 05 November 2019
Accepted after revision: 05 December 2019
Publication Date:
02 January 2020 (online)
Abstract
Reported is a cooperative catalytic system consisting of a complex of Pd with dicyclohexyl(2′,4′,6′-triisopropylbiphenyl-2-yl)phosphine (XPhos) and the potassium salt of 5-norbornene-2-carboxylic acid that permits the use of epoxides as dual-functionalized alkylating reagents in Catellani-type reactions for the assembly of heterocycles. Salient features of this research include readily available substrates, use of the potassium salt of 5-norbornene-2-carboxylic acid as a catalytic mediator as well as a base, and excellent regioselectivity for the cleavage of epoxides. This mild, chemoselective, scalable, atom- and step-economic protocol offers a straightforward approach for the assembly of isochroman and 2,3-dihydrobenzofuran scaffolds.
-
References and Notes
- 1 For seminal work, see: Catellani M, Frignani F, Rangoni A. Angew. Chem. Int. Ed. 1997; 36: 119
- 2a Catellani M. Top. Organomet. Chem. 2005; 14: 21
- 2b Lautens M, Alberico D, Bressy C, Fang Y.-Q, Mariampillai B, Wilhelm T. Pure Appl. Chem. 2006; 78: 351
- 2c Catellani M, Motti E, Della Ca’ N. Acc. Chem. Res. 2008; 41: 1512
- 2d Martins A, Mariampillai B, Lautens M. Top. Curr. Chem. 2010; 292: 1
- 2e Ferraccioli R. Synthesis 2013; 45: 581
- 2f Ye J, Lautens M. Nat. Chem. 2015; 7: 863
- 2g Zhu H, Ye C, Chen Z. Youji Huaxue 2015; 35: 2291
- 2h Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
- 2i Kim D.-S, Park W.-J, Jun C.-H. Chem. Rev. 2017; 117: 8977
- 2j Zhao K, Ding L, Gu Z. Synlett 2018; 29: 129
- 2k Cheng H.-G, Chen S, Chen R, Zhou Q. Angew. Chem. Int. Ed. 2019; 58: 5832
- 2l Wang J, Dong G. Chem. Rev. 2019; 119: 7478
- 3a Catellani M, Cugini F, Bocelli G. J. Organomet. Chem. 1999; 584: 63
- 3b Cárdenas DJ, Martín-Matute B, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 5033
- 3c Larraufie M.-H, Maestri G, Beaume É, Derat P, Ollivier C, Fensterbank L, Courillon C, Lacôte E, Catellani M, Malacria M. Angew. Chem. Int. Ed. 2011; 50: 12253
- 3d Maestri G, Motti E, Della Ca’ N, Malacria M, Derat E, Catellani M. J. Am. Chem. Soc. 2011; 133: 8574
- 3e Chai DI, Thansandote P, Lautens M. Chem. Eur. J. 2011; 17: 8175
- 4 For the first example of an alkyl halide as an electrophile, see ref. 2.
- 5 For the first example of aryl halide as an electrophile, see: Catellani M, Motti E, Baratta S. Org. Lett. 2001; 3: 3611
- 6a Candito DA, Lautens M. Org. Lett. 2010; 12: 3312
- 6b Liu C, Liang Y, Zhang N, Zhang BS, Feng Y, Bi S, Liang Y.-M. Chem. Commun. 2018; 54: 3407
- 6c Qian G, Bai M, Gao S, Chen H, Zhou S, Cheng H.-G, Yan W, Zhou Q. Angew. Chem. Int. Ed. 2018; 57: 10984
- 7a Dong Z, Dong G. J. Am. Chem. Soc. 2013; 135: 18350
- 7b Chen Z.-Y, Ye C.-Q, Zhu H, Zeng X.-P, Yuan J.-J. Chem. Eur. J. 2014; 20: 4237
- 7c Zhou P.-X, Ye Y.-Y, Ma J.-W, Zheng L, Tang Q, Qiu Y.-F, Song B, Qiu Z.-H, Xu P.-F, Liang Y.-M. J. Org. Chem. 2014; 79: 6627
- 7d Pan S, Ma X, Zhong D, Chen W, Liu M, Wu H. Adv. Synth. Catal. 2015; 357: 3052
- 7e Shi H, Babinski DJ, Ritter T. J. Am. Chem. Soc. 2015; 137: 3775
- 7f Sun F, Gu Z. Org. Lett. 2015; 17: 2222
- 7g Wang P, Li G.-C, Jain P, Farmer ME, He J, Shen P.-X, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14092
- 7h Fu WC, Zheng B, Zhao Q, Chan WT. K, Kwong FY. Org. Lett. 2017; 19: 4335
- 7i Whyte A, Olson ME, Lautens M. Org. Lett. 2018; 20: 345
- 8a Zhou P.-X, Ye Y.-Y, Liu C, Zhao L.-B, Hou J.-Y, Chen D.-Q, Tang Q, Wang A.-Q, Zhang J.-Y, Huang Q.-X, Xu P.-F, Liang Y.-M. ACS Catal. 2015; 5: 4927
- 8b Dong Z, Wang J, Ren Z, Dong G. Angew. Chem. Int. Ed. 2015; 54: 12664
- 8c Huang Y, Zhu R, Zhao K, Gu Z. Angew. Chem. Int. Ed. 2015; 54: 12669
- 8d Pan S, Wu F, Yu R, Chen W. J. Org. Chem. 2016; 81: 1558
- 8e Sun F, Li M, He C, Wang B, Li B, Sui X, Gu Z. J. Am. Chem. Soc. 2016; 138: 7456
- 8f Wang J, Zhang L, Dong Z, Dong G. Chem 2016; 1: 581
- 8g Xu S, Jiang J, Ding L, Fu Y, Gu Z. Org. Lett. 2018; 20: 325
- 8h Fan X, Gu Z. Org. Lett. 2018; 20: 1187
- 9a Cai W, Gu Z. Org. Lett. 2019; 21: 3204
- 9b Li R, Zhou Y, Yoon K.-Y, Dong Z, Dong G. Nat. Commun. 2019; 10: 3555
- 10a Wang Z, Kuninobu Y, Kanai M. J. Am. Chem. Soc. 2015; 137: 6140
- 10b Cheng G, Li T, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 10950
- 10c Li D.-D, Niu L.-F, Ju Z.-Y, Xu Z, Wu C. Eur. J. Org. Chem. 2016; 3090
- 11a Nising CF, Bräse S. Chem. Soc. Rev. 2008; 37: 1218
- 11b Hu J, Bian M, Ding H. Tetrahedron Lett. 2016; 57: 5519
- 12a Palucki M, Wolfe J, Buchwald S. J. Am. Chem. Soc. 1996; 118: 10333
- 12b Mann G, Hartwig J. J. Am. Chem. Soc. 1996; 118: 13109
- 13a Bertolini F, Pineschi M. Org. Prep. Proced. Int. 2009; 41: 385
- 13b Sheppard TD. J. Chem. Res. 2011; 35: 377
- 14a Li R, Dong G. Angew. Chem. Int. Ed. 2018; 57: 1697
- 14b Li R, Liu F, Dong G. Org. Chem. Front. 2018; 5: 3108
- 15 Cheng H.-G, Wu C, Chen H, Chen R, Qian G, Geng Z, Wei Q, Xia Y, Zhang J, Zhang Y, Zhou Q. Angew. Chem. Int. Ed. 2018; 57: 3444
- 16a Lautens M, Piguel S. Angew. Chem. Int. Ed. 2000; 39: 1045
- 16b Huang X, Anderson KW, Zim D, Jiang L, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 6653
- 17 CCDC 1816726 and 1816908 contains the supplementary crystallographic data for compounds 4e' and 5e′′, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 18 Wu C, Cheng H.-G, Chen R, Chen H, Liu Z.-S, Zhang J, Zhang Y, Zhu Y, Geng Z, Zhou Q. Org. Chem. Front. 2018; 5: 2533
- 19 Richter H, Rohlmann R, Mancheño OG. Chem. Eur. J. 2011; 17: 11622
- 20 TenBrink RE, Bergh CL, Duncan JN, Harris DW, Huff RM, Lahti RA, Lawson CF, Lutzke BS, Martin IJ, Rees SA, Schlachter SK, Sih JC, Smith MW. J. Med. Chem. 1996; 39: 2435
- 21 Allen JC, Kociok-Köhn G, Frost CG. Org. Biomol. Chem. 2012; 10: 32
- 22 Chen L, Liu W, Huang K, Hu X, Fang Z.-X, Wu J.-L, Zhang Q.-Q. Heterocycles 2011; 83: 1853
- 23a Rozenzweig-Lipson S, Brandt MR. WO 2006/116171, 2006
- 23b Rosenzweig-Lipson S. US 20070225334, 2007
- 23c Gross JL, Williams MJ, Stack GP, Gao H, Zhou D. US 2005143452, 2008 ; Chem. Abstr. 2008, 149, 471316
- 24 Gontcharov AV, Shaw C.-C, Yu Q, Tadayon S, Bernatchez M, Lankau M, Cantin M, Potoski JR, Khafizova G, Stack G, Gross J, Zhou D. Org. Process Res. Dev. 2010; 14: 1438
- 25 Wu C, Yang X, Shang Y, Cheng H.-G, Yan W, Zhou Q. Org. Lett. 2019; 21: 8938
- 26 Lei C, Jin X, Zhou J. Angew. Chem. Int. Ed. 2015; 54: 13397
For related reviews, see:
For mechanistic studies on Catellani-type reactions, see:
For selected examples, see:
For selected examples, see:
For selected reviews, see:
For recent reviews, see: