Synlett 2020; 31(08): 750-771
DOI: 10.1055/s-0039-1690824
account
© Georg Thieme Verlag Stuttgart · New York

Aryne-Based Multicomponent Coupling Reactions

Sourav Ghorai
,
Daesung Lee
We thank the National Science Foundation (CHE-1764141) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 17. Januar 2020

Accepted after revision: 25. Januar 2020

Publikationsdatum:
20. März 2020 (online)


Abstract

Multicomponent reactions (MCRs) constitute a powerful synthetic tool to generate a large number of small molecules with high atom economy, which thus can efficiently expand the chemical space with molecular diversity and complexity. Aryne-based MCRs offer versatile possibilities to construct functionalized arenes and benzo-fused heterocycles. Because of their electrophilic nature, arynes couple with a broad range of nucleophiles. Thus, a variety of aryne-based MCRs have been developed, the representative of which are summarized in this account.

1 Introduction

2 Aryne-Based Multicomponent Reactions

2.1 Trapping with Isocyanides

2.2 Trapping with Imines

2.3 Trapping with Amines

2.4 Insertion into π-Bonds

2.5 Trapping with Ethers and Thioethers

2.6 Trapping with Carbanions

2.7 Transition-Metal-Catalyzed Approaches

3 Strategies Based on Hexadehydro Diels–Alder Reaction

3.1 Dihalogenation

3.2 Halohydroxylation and Haloacylation

3.3 Amides and Imides

3.4 Quinazolines

3.5 Benzocyclobutene-1,2-diimines and 3H-Indole-3-imines

3.6 Other MCRs of Arynes and Isocyanides

4 Conclusion

 
  • References

  • 1 Wenk HH, Winkler M, Sander W. Angew. Chem. Int. Ed. 2003; 42: 502
  • 2 Sanz R. Org. Prep. Proced. Int. 2008; 40: 215
  • 3 Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
  • 4 Roy T, Biju AT. Chem. Commun. 2018; 54: 2580
  • 5 Stoermer R, Kahlert B. Ber. Dtsch. Chem. Ges. 1902; 35: 1633
  • 6 Roberts JD, Simmons HE, Carlsmith LA, Vaughan CW. J. Am. Chem. Soc. 1953; 75: 3290
  • 7 Huisgen R, Knorr R. Tetrahedron Lett. 1963; 4: 1017
  • 8 Wittig G, Pohmer L. Chem. Ber. 1956; 89: 1334
  • 9 Yoshio H, Takaaki S, Hiroshi K. Chem. Lett. 1983; 12: 1211
  • 10 Matsumoto T, Hosoya T, Katsuki M, Suzuki K. Tetrahedron Lett. 1991; 32: 6735
  • 11 Stiles M, Miller RG. J. Am. Chem. Soc. 1960; 82: 3802
  • 12 Hoye TR, Baire B, Niu D, Willoughby PH, Woods BP. Nature 2012; 490: 208
  • 13 Wittig G, Hoffmann RW. Org. Synth. 1967; 47: 4
  • 14 Gilchrist TL, Graveling FJ, Rees CW. Chem. Commun. 1968; 821
  • 15 Campbell CD, Rees CW. J. Chem. Soc. C 1969; 742
  • 16 Ganem B. Acc. Chem. Res. 2009; 42: 463
  • 17 Biggs-Houck JE, Younai A, Shaw JT. Curr. Opin. Chem. Biol. 2010; 14: 371
  • 18 Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
  • 19 Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
  • 20 Yoshida H. In Multicomponent Reactions in Organic Synthesis . Zhu J, Wang Q, Wang M. -X. Wiley-VCH; Weinheim: 2015
  • 21 Dömling A. Chem. Rev. 2006; 106: 17
  • 22 Váradi A, Palmer TC, Dardashti RN, Majumdar S. Molecules 2016; 21: 19
  • 23 Yoshida H, Fukushima H, Ohshita J, Kunai A. Angew. Chem. Int. Ed. 2004; 43: 3935
  • 24 Yoshida H, Fukushima H, Morishita T, Ohshita J, Kunai A. Tetrahedron 2007; 63: 4793
  • 25 Yoshida H, Fukushima H, Ohshita J, Kunai A. Tetrahedron Lett. 2004; 45: 8659
  • 26 Allan KM, Gilmore CD, Stoltz BM. Angew. Chem. Int. Ed. 2011; 50: 4488
  • 27 Li J, Noyori S, Nakajima K, Nishihara Y. Organometallics 2014; 33: 3500
  • 28 Li J, Noyori S, Iwasaki M, Nakajima K, Nishihara Y. Heterocycles 2012; 86: 933
  • 29 Yoshida H, Asatsu Y, Mimura Y, Ito Y, Ohshita J, Takaki K. Angew. Chem. Int. Ed. 2011; 50: 9676
  • 30 Sha F, Huang X. Angew. Chem. Int. Ed. 2009; 48: 3458
  • 31 Sha F, Shen H, Wu XY. Eur. J. Org. Chem. 2013; 2537
  • 32 Yoshida H, Fukushima H, Ohshita J, Kunai A. J. Am. Chem. Soc. 2006; 128: 11040
  • 33 Jeganmohan M, Cheng CH. Chem. Commun. 2006; 2454
  • 34 Jeganmohan M, Bhuvaneswari S, Cheng CH. Chem. Asian J. 2010; 5: 153
  • 35 Liu K, Liu LL, Gu CZ, Dai B, He L. RSC Adv. 2016; 6: 33606
  • 36 Tan J, Liu B, Su S. Org. Chem. Front. 2018; 5: 3093
  • 37 Li SJ, Wang Y, Xu JK, Xie D, Tian SK, Yu ZX. Org. Lett. 2018; 20: 4545
  • 38 Liu P, Lei M, Hu L. Tetrahedron 2013; 69: 10405
  • 39 Bhunia A, Roy T, Pachfule P, Rajamohanan PR, Biju AT. Angew. Chem. Int. Ed. 2013; 52: 10040
  • 40 Xie C, Zhang Y, Xu P. Synlett 2008; 3115
  • 41 Huang X, Zhang T. Tetrahedron Lett. 2009; 50: 208
  • 42 Kwon J, Kim BM, Yoshida H, Morishita T, Fukushima H, Ohshita J. Org. Lett. 2007; 9: 7
  • 43 Morishita T, Fukushima H, Yoshida H, Ohshita J, Kunai A. J. Org. Chem. 2008; 73: 5452
  • 44 Yoshida H, Morishita T, Ohshita J. Org. Lett. 2008; 10: 3845
  • 45 Kwon J, Kim BM. Org. Lett. 2019; 21: 428
  • 46 Li S.-J, Han L, Tian S.-K. Chem. Commun. 2019; 55: 11255
  • 47 Bhojgude SS, Roy T, Gonnade RG, Biju AT. Org. Lett. 2016; 18: 5424
  • 48 Bhojgude SS, Baviskar DR, Gonnade RG, Biju AT. Org. Lett. 2015; 17: 6270
  • 49 Okuma K, Kinoshita H, Nagahora N, Shioji K. Eur. J. Org. Chem. 2016; 2264
  • 50 Stephens D, Zhang Y, Cormier M, Chavez G, Arman H, Larionov OV. Chem. Commun. 2013; 49: 6558
  • 51 Tang C, Wang G, Yang X, Wu X, Sha F. Tetrahedron Lett. 2014; 55: 6447
  • 52 Roy T, Baviskar DR, Biju AT. J. Org. Chem. 2015; 80: 11131
  • 53 Roy T, Bhojgude SS, Kaicharla T, Thangaraj M, Garai B, Biju AT. Org. Chem. Front. 2016; 3: 71
  • 54 Roy T, Thangaraj M, Gonnade RG, Biju AT. Chem. Commun. 2016; 52: 9044
  • 55 Neog K, Dutta D, Das B, Gogoi P. Org. Biomol. Chem. 2019; 17: 6450
  • 56 Wu C, Li R, Tang H, Fu H, Ren H, Wang X, Wu C, Shi F. J. Org. Chem. 2014; 79: 1344
  • 57 Yoshida H, Watanabe M, Fukushima H, Ohshita J, Kunai A. Org. Lett. 2004; 6: 4049
  • 58 Yoshioka E, Kohtani S, Miyabe H. Angew. Chem. Int. Ed. 2011; 50: 6638
  • 59 Yoshida H, Ito Y, Ohshita J. Chem. Commun. 2011; 47: 8512
  • 60 Wen LR, Man NN, Yuan WK, Li M. J. Org. Chem. 2016; 81: 5942
  • 61 Sharma A, Gogoi P. Org. Biomol. Chem. 2019; 17: 333
  • 62 Yoshioka E, Tanaka H, Kohtani S, Miyabe H. Org. Lett. 2013; 15: 3938
  • 63 Neog K, Das B, Gogoi P. Org. Biomol. Chem. 2018; 16: 3138
  • 64 Gouthami P, Chavan LN, Chegondi R, Chandrasekhar S. J. Org. Chem. 2018; 83: 3325
  • 65 Liu F, Yang H, Hu X, Jiang G. Org. Lett. 2014; 16: 6408
  • 66 Sharma A, Gogoi P. ChemistrySelect 2017; 2: 11801
  • 67 Yoshioka E, Miyabe H. Tetrahedron 2012; 68: 179
  • 68 Liu FL, Chen JR, Zou YQ, Wei Q, Xiao WJ. Org. Lett. 2014; 16: 3768
  • 69 Li HY, Xing LJ, Lou MM, Wang H, Liu RH, Wang B. Org. Lett. 2015; 17: 1098
  • 70 Hazarika H, Neog K, Sharma A, Das B, Gogoi P. J. Org. Chem. 2019; 84: 5846
  • 71 Li Y, Qiu D, Gu R, Wang J, Shi J, Li Y. J. Am. Chem. Soc. 2016; 138: 10814
  • 72 Li X, Sun Y, Huang X, Zhang L, Kong L, Peng B. Org. Lett. 2017; 19: 838
  • 73 Okuma K, Hino H, Sou A, Nagahora N, Shioji K. Chem. Lett. 2009; 38: 1030
  • 74 Okuma K, Fukuzaki Y, Nojima A, Shioji K, Yokomori Y. Tetrahedron Lett. 2008; 49: 3063
  • 75 Okuma K, Fukuzaki Y, Nojima A, Sou A, Hino H, Matsunaga N, Nagahora N, Shioji K, Yokomori Y. Bull. Chem. Soc. Jpn. 2010; 83: 1238
  • 76 Thangaraj M, Bhojgude SS, Mane MV, Biju AT. Chem. Commun. 2016; 52: 1665
  • 77 Nakayama J, Hoshino K, Hoshino M. Chem. Lett. 1985; 677
  • 78 Fan R, Liu B, Zheng T, Xu K, Tan C, Zeng T, Su S, Tan J. Chem. Commun. 2018; 54: 7081
  • 79 Zheng T, Tan J, Fan R, Su S, Liu B, Tan C, Xu K. Chem. Commun. 2018; 54: 1303
  • 80 Tomori H, Fox JM, Buchwald SL. J. Org. Chem. 2000; 5334
  • 81 Leroux F, Schlosser M. Angew. Chem. Int. Ed. 2002; 41: 4272
  • 82 Leroux FR, Bonnafoux L, Heiss C, Colobert F, Lanfranchi DA. Adv. Synth. Catal. 2007; 349: 2705
  • 83 Demangeat C, Saied T, Ramozzi R, Ingrosso F, Ruiz-Lopez M, Panossian A, Leroux FR, Fort Y, Comoy C. Eur. J. Org. Chem. 2019; 547
  • 84 Nagaki A, Ichinari D, Yoshida JI. J. Am. Chem. Soc. 2014; 136: 12245
  • 85 Pawlas J, Begtrup M. Org. Lett. 2002; 4: 2687
  • 86 Hamura T, Chuda Y, Nakatsuji Y, Suzuki K. Angew. Chem. Int. Ed. 2012; 51: 3368
  • 87 Ganta A, Snowden TS. Org. Lett. 2008; 10: 5103
    • 88a Larossa I, Da Silva MI, Gómez PM, Hannen P, Ko E, Lenger SR, Linke SR, White AJ. P, Wilton D, Barret AG. M. J. Am. Chem. Soc. 2006; 128: 14042
    • 88b Soorukram D, Qu T, Barrett AG. M. Org. Lett. 2008; 10: 3833
  • 89 Feng M, Jiang X. Synthesis 2017; 49: 4414
  • 90 Xie C, Zhang Y, Yang Y. Chem. Commun. 2008; 4810
  • 91 Yoshida H, Morishita T, Nakata H, Ohshita J. Org. Lett. 2009; 11: 373
  • 92 Bhuvaneswari S, Jeganmohan M, Cheng CH. Chem. Commun. 2008; 5013
  • 93 Jeganmohan M, Bhuvaneswari S, Cheng CH. Angew. Chem. Int. Ed. 2009; 48: 391
  • 94 Garve LK. B, Werz DB. Org. Lett. 2015; 17: 596
  • 95 Peng X, Ma C, Tung CH, Xu Z. Org. Lett. 2016; 18: 4154
  • 96 Niu SL, Hu J, He K, Chen YC, Xiao Q. Org. Lett. 2019; 21: 4250
  • 97 Berti F, Crotti P, Cassano G, Pineschi M. Synlett 2012; 2463
  • 98 Xie C, Liu L, Zhang Y, Xu P. Org. Lett. 2008; 10: 2393
  • 99 Yoshikawa E, Yamamoto Y. Angew. Chem. Int. Ed. 2000; 39: 173
  • 100 Jeganmohan M, Cheng CH. Org. Lett. 2004; 6: 2821
  • 101 Jayanth TT, Jeganmohan M, Cheng CH. Org. Lett. 2005; 7: 2921
  • 102 Jeganmohan M, Cheng CH. Synthesis 2005; 1693
  • 103 Jayanth TT, Cheng CH. Chem. Commun. 2006; 894
  • 104 Henderson JL, Edwards AS, Greaney MF. J. Am. Chem. Soc. 2006; 128: 7426
  • 105 Liu Z, Larock RC. Angew. Chem. Int. Ed. 2007; 46: 2535
  • 106 Bhuvaneswari S, Jeganmohan M, Cheng CH. Org. Lett. 2006; 8: 5581
  • 107 Chatani N, Kamitani A, Oshita M, Fukumoto Y, Murai S. J. Am. Chem. Soc. 2001; 123: 12686
  • 108 Pi SF, Yang XH, Huang XC, Liang Y, Yang GN, Zhang XH, Li JH. J. Org. Chem. 2010; 75: 3484
  • 109 Feng M, Tang B, Wang N, Xu HX, Jiang X. Angew. Chem. Int. Ed. 2015; 54: 14960
  • 110 Feng M, Tang B, Xu HX, Jiang X. Org. Lett. 2016; 18: 4352
  • 111 Jayanth TT, Cheng CH. Angew. Chem. Int. Ed. 2007; 46: 5921
  • 112 Qiu Z, Xie Z. Angew. Chem. Int. Ed. 2009; 48: 5729
  • 113 Zeng Y, Zhang L, Zhao Y, Ni C, Zhao J, Hu J. J. Am. Chem. Soc. 2013; 135: 2955
  • 114 Zeng Y, Hu J. Org. Lett. 2016; 18: 856
  • 115 Miyawaki K, Suzuki R, Kawano T, Ueda I. Tetrahedron Lett. 1997; 38: 3943
  • 116 Bradley AZ, Johnson RP. J. Am. Chem. Soc. 1997; 119: 9917
  • 117 Chen J, Palani V, Hoye TR. J. Am. Chem. Soc. 2016; 138: 4318
  • 118 Ross SP, Hoye TR. Org. Lett. 2018; 20: 100
  • 119 Arora S, Zhang J, Pogula V, Hoye TR. Chem. Sci. 2019; 9069
  • 120 Hu Y, Hu Y, Hu Q, Ma J, Lv S, Liu B, Wang S. Chem. Eur. J. 2017; 23: 4065
  • 121 Hu Q, Li L, Yin F, Zhang H, Hu Y, Liu B, Hu Y. RSC Adv. 2017; 7: 49180
  • 122 Xiao X, Woods BP, Xiu W, Hoye TR. Angew. Chem. Int. Ed. 2018; 57: 9901
  • 123 Niu D, Wang T, Woods BP, Hoye TR. Org. Lett. 2014; 16: 254
  • 124 Yun SY, Wang KP, Lee NK, Mamidipalli P, Lee D. J. Am. Chem. Soc. 2013; 135: 4668
  • 125 Karmakar R, Yun SY, Wang KP, Lee D. Org. Lett. 2014; 16: 6
  • 126 Lee NK, Yun SY, Mamidipalli P, Salzman RM, Lee D, Zhou T, Xia Y. J. Am. Chem. Soc. 2014; 136: 4363
  • 127 Gupta S, Lin Y, Xia Y, Wink DJ, Lee D. Chem. Sci. 2019; 10: 2212
  • 128 Mamidipalli P, Yun SY, Wang KP, Zhou T, Xia Y, Lee D. Chem. Sci. 2014; 5: 2362
  • 129 Karmakar R, Mamidipalli P, Yun SY, Lee D. Org. Lett. 2013; 15: 1938
  • 130 Karmakar R, Lee D. Org. Lett. 2016; 18: 6105
  • 131 Gupta S, Xie P, Xia Y, Lee D. Org. Lett. 2017; 19: 5162
  • 132 Karmakar R, Le A, Xie P, Xia Y, Lee D. Org. Lett. 2018; 20: 4168
  • 133 Gupta S, Xie P, Xia Y, Lee D. Org. Chem. Front. 2018; 5: 2208
  • 134 Karmakar R, Lee D. Chem. Soc. Rev. 2016; 45: 4459
  • 135 Lee D, Ghorai S. In Silver Catalysis in Organic Synthesis, Vol. 1. Li C -J, Bi X. Wiley-VCH; Weinheim: 2019
  • 136 Balz G, Schiemann G. Ber. Dtsch. Chem. Ges. 1927; 60: 1186
  • 137 Finger GC, Kruse CW. J. Am. Chem. Soc. 1956; 78: 6034
  • 138 Wang KP, Yun SY, Mamidipalli P, Lee D. Chem. Sci. 2013; 4: 3205
  • 139 Karmakar R, Ghorai S, Xia Y, Lee D. Molecules 2015; 20: 15862
  • 140 Ritter JJ, Minieri P. J. Am. Chem. Soc. 1948; 70: 4045
  • 141 Ghorai S, Lee D. Tetrahedron 2017; 73: 4062
  • 142 Ikawa T, Nishiyama T, Shigeta T, Mohri S, Morita S, Takayanagi SI, Terauchi Y, Morikawa Y, Takagi A, Ishikawa Y, Fujii S, Kita Y, Akai S. Angew. Chem. Int. Ed. 2011; 50: 5674
  • 143 Ajani OO, Audu OY, Aderohunmu DV, Owolabi FE, Olomieja AO. Am. J. Drug Discov. Dev. 2017; 7: 1
  • 144 Ghorai S, Lin Y, Xia YJ, Wink D, Lee D. Org. Lett. 2020; 22: 626
  • 145 Ghorai S, Lin Y, Xia YJ. Wink D, Lee D. Org. Lett. 2020; 22: 642
  • 146 Ghorai S, Lee D. Org. Lett. 2019; 21: 7390