Synlett 2020; 31(09): 856-860
DOI: 10.1055/s-0039-1690845
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Addition of Boronic Acids to Silylnitronates

Mansour Dolé Kerim
a   Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA Paris - UMR 7652, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
,
Pakoupati Boyode
b   Laboratoire de Chimie Organique et des Substances Naturelles, Département de Chimie, Faculté des Sciences, Université de Lomé, BP 1515, Lomé, Togo
,
Julian Garrec
c   Unité Chimie et Procédés, ENSTA Paris – UMR 7652, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau, France
,
a   Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA Paris - UMR 7652, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
› Author Affiliations
M. D. K. thanks the Islamic Development Bank for a PhD fellowship. We thank the ENSTA Paris for financial support.
Further Information

Publication History

Received: 29 December 2019

Accepted after revision: 10 February 2020

Publication Date:
10 March 2020 (online)


Abstract

We report for the first time a metal-free addition of boronic acids to silylnitronates to afford oxime derivatives through aryl transfer on the carbon nitrogen double bond. A reaction mechanism has been proposed in relation with a DFT study on the key aryl transfer. This arylation process is effective for cycloalkenyl nitro derivatives leading to oximes that may be oxidatively converted into 3-arylisoxazole derivatives.

Supporting Information

 
  • References and Notes


    • For reviews on boronic acids, see:
    • 1a Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2011
    • 1b Boron Reagents in Synthesis, ACS Symposium Series 1236. Coca A. American Chemical Society; Washington DC: 2016

      For reviews on the Petassis reaction, see:
    • 2a Candeias N. R.: Montalbano F, Cal PM. S. D, Gois PM. P. Chem. Rev. 2010; 110: 6169
    • 2b Ramadhar TR, Batey RA. Recent Advances in Nucleophilic Addition Reactions of Organoboronic Acids and their Derivatives to Unsaturated C–N Functionalities. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2011. Chap. 9, 427-477
    • 2c Guerrera CA, Ryder TR. The Petassis Borono-Mannich Multicomponent Reaction . In Boron Reagents in Synthesis, ACS Symposium Series 1236. Coca A. American Chemical Society; Washington DC: 2016. Chap. 9, 275-311
  • 4 Candeias NR, Veiros LF, Afonso CA. M, Gois PM. P. Eur. J. Org. Chem. 2009; 1859
  • 7 Ono N. Alkylation, Acylation, and Halogenation of Nitro Compounds. In The Nitro Group in Organic Synthesis. Wiley-VCH; Weinheim: 2001. Chap. 5, 126-158

    • For reviews, see:
    • 8a Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, 2nd ed. Feuer H. John Wiley & Sons; New York: 2007
    • 8b Weber WP. Silyl Nitronates. In Silicon Reagents for Organic Synthesis. Reactivity and Structure Concepts in Organic Chemistry, Vol. 14. Springer; Berlin/Heidelberg: 1983
    • 9a Barton DH. R, Motherwell WB, Zard SZ. J. Chem. Soc., Chem. Commun. 1982; 551
    • 9b Barton DH. R, Motherwell WB, Zard SZ. Bull. Soc. Chim. Fr. 1983; 61
    • 9c Tamura R, Sato M, Oda D. J. Org. Chem. 1986; 51: 4368
  • 11 Typical Procedure: Preparation of 4a from 1a Et3N (1.1 mmol, 0.15 ml) was added to a stirred solution of allylic nitro compound 1a (1 mmol, 141 mg) and tert-butyldimethylsilyl chloride (1.1 mmol, 166 mg) in acetonitrile (2 mL). The reaction mixture was stirred for 30 min at room temperature and quickly filtered through a short column of silica gel, eluting with dichloromethane (100 mL) to give, after evaporation of the solvent, nitronate 2a as a yellow oil formed in quantitative yield (256 mg, 1 mmol). 4-Ethylphenyl boronic acid (3a; 2 equiv, 1 mmol, 150 mg) was added to a solution of 2a (1 equiv, 0.5 mmol, 128 mg) in acetonitrile (1 mL). After degassing with argon, the reaction mixture was heated at 70 °C under argon for 30 min. Evaporation of the solvent under reduced pressure followed by purification by flash chromatography on silica gel (PE/Et2O, 100:0 to 80:20) afforded oxime 4a as an orange solid (78 mg, 0.34 mmol, 68%); mp 161 °C; Rf = 0.35 (PE/Et2O, 80:20). 1H NMR (400 MHz, CDCl3): δ = 8.97 (br, 1 H), 7.27 (d, J = 8.1 Hz, 2 H), 7.15 (d, J = 8.1 Hz, 2 H), 5.71–5.61 (m, 1 H), 2.70 (q, J = 7.6 Hz, 2 H), 2.39–2.29 (m, 2 H), 2.10–2.04 (m, 2 H), 1.71–1.54 (m, 4 H), 1.28 (t, J = 7.6 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 160.3, 144.4, 135.3, 135.0, 130.1, 128.7, 127.7, 28.8, 26.2, 24.7, 22.5, 22.2, 15.4. HRMS: m/z calcd for C15H19NO: 229.1467; found: 229.1464. IR (thin film): ν = 3214, 3038, 2932, 2866, 1551, 1447, 1262, 997, 968, 823, 737, 722 cm–1.
  • 12 Colvin EW, Robertson AD, Seebach D, Beck AK. J. Chem. Soc., Chem. Commun. 1981; 952
  • 13 For more classical cycloaddition-based conversions of nitronate derivatives into isoxazoles, see: Namboothiri IN. N, Rastogi N. Isoxazolines from Nitro Compounds: Synthesis and Applications, In Synthesis of Heterocycles via Cycloadditions, Vol. 12. Gupta RR, Hassner A. Springer; Berlin/Heidelberg: 2008: 1-44