RSS-Feed abonnieren
DOI: 10.1055/s-0039-1690898
Manifestation of the β-Silicon Effect in the Reactions of Unsaturated Systems Involving a 1,2-Silyl Shift
This work was supported by a grant from Latvian Council of Science (grant No. LZP-2018/1-0315) and doctoral student grant from Riga Technical University (grant No. DOK.MLKF/19).Publikationsverlauf
Received: 31. Januar 2020
Accepted after revision: 30. März 2020
Publikationsdatum:
20. April 2020 (online)
Abstract
Many chemical transformations of organosilicon compounds proceed due to the capability of silyl substituents to stabilize a positive charge in its β-position. This short review provides an overview of the present understanding of the β-silicon effect and focusses on the synthetic applications of 1,2-silyl shifts resulting from non-vertical stabilization of alkylcarbenium ions and vinyl cations. The reactions of silicon containing unsaturated starting materials, alkenes, allenes, and alkynes, involving β-silyl group stabilized cationic intermediates, transition metal carbenes, or vinylidene complexes will be discussed.
1 Introduction
2 Origins of the β-Silicon Effect
3 Reactions of Allenylsilanes
4 Reactions of Alkynes
4.1 Propargylsilanes
4.2 Alkynylsilanes
5 Reactions of Alkenes
5.1 Allylsilanes
5.2 Vinylsilanes
6 Conclusions
-
References
- 1 Present address: Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, 1015, Switzerland.
- 2 Slater JC. J. Chem. Phys. 1964; 41: 3199
- 3 Gray H. Electrons and Chemical Bonding . W. A. Benjamin; New York: 1964
- 4 Veszprémi T, Nagy J. J. Organomet. Chem. 1983; 255: 41
- 5 Allred AL, Rochow EG. J. Inorg. Nucl. Chem. 1958; 5: 269
- 6 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. J. Chem. Soc., Perkin Trans. 2 1987; S1
- 7 Walsh R. Acc. Chem. Res. 1981; 14: 246
- 8 Wuts PG. M. Greene’s Protective Groups in Organic Synthesis, 5th ed. Wiley; Hoboken: 2014: 17
- 9 Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 10 Jones GR, Landais Y. Tetrahedron 1996; 52: 7599
- 11 Chan TH, Fleming I. Synthesis 1979; 761
- 12 Brown HC. The Nonclassical Ion Problem . Springer US; Boston: 1977
- 13 Curtis-Long MJ, Aye Y. Chem. Eur. J. 2009; 15: 5402
- 14 Knölker H.-J. J. Prakt. Chem. 1997; 339: 304
- 15 Schmidt A, Knölker H.-J. Synlett 2010; 2207
- 16 Chabaud L, James P, Landais Y. Eur. J. Org. Chem. 2004; 3173
- 17 Sommer LH, Whitmore FC. J. Am. Chem. Soc. 1946; 68: 485
- 18 Sommer LH, Dorfman E, Goldberg GM, Whitmore FC. J. Am. Chem. Soc. 1946; 68: 488
- 19 Lambert JB. Tetrahedron 1990; 46: 2677
- 20 Traylor TG, Hanstein W, Berwin HJ, Clinton NA, Brown RS. J. Am. Chem. Soc. 1971; 93: 5715
- 21 Lambert JB, Wang GT, Finzel RB, Teramura DH. J. Am. Chem. Soc. 1987; 109: 7838
- 22 Lambert JB, Chelius EC. J. Am. Chem. Soc. 1990; 112: 8120
- 23 Lambert JB, Liu X. J. Organomet. Chem. 1996; 521: 203
- 24 Lambert JB, Zhao Y, Emblidge RW, Salvador LA, Liu X, So J.-H, Chelius EC. Acc. Chem. Res. 1999; 32: 183
- 25 Wierschke SG, Chandrasekhar J, Jorgensen WL. J. Am. Chem. Soc. 1985; 107: 1496
- 26 Ibrahim MR, Jorgensen WL. J. Am. Chem. Soc. 1989; 111: 819
- 27 Fujio M, Uchida M, Okada A, Alam MA, Fujiyama R, Siehl H.-U, Tsuno Y. Bull. Chem. Soc. Jpn. 2005; 78: 1834
- 28 Fujio M, Umezaki Y, Alam MA, Kikukawa K, Fujiyama R, Tsuno Y. Bull. Chem. Soc. Jpn. 2006; 79: 1091
- 29 Fujio M, Alam MA, Umezaki Y, Kikukawa K, Fujiyama R, Tsuno Y. Bull. Chem. Soc. Jpn. 2007; 80: 2378
- 30 Fujiyama R, Alam MA, Shiiyama A, Munechika T, Fujio M, Tsuno Y. J. Phys. Org. Chem. 2010; 23: 819
- 31 Zhang W, Stone JA, Brook MA, McGibbon GA. J. Am. Chem. Soc. 1996; 118: 5764
- 32 Müller T, Margraf D, Syha Y. J. Am. Chem. Soc. 2005; 127: 10852
- 33 Müller T, Juhasz M, Reed CA. Angew. Chem. Int. Ed. 2004; 43: 1543
- 34 Klaer A, Müller T. J. Phys. Org. Chem. 2010; 23: 1043
- 35 Danheiser RL, Carini DJ, Basak A. J. Am. Chem. Soc. 1981; 103: 1604
- 36 Becker DA, Danheiser RL. J. Am. Chem. Soc. 1989; 111: 389
- 37 Danheiser RL, Kwasigroch CA, Tsai YM. J. Am. Chem. Soc. 1985; 107: 7233
- 38 Danheiser RL, Stoner EJ, Koyama H, Yamashita DS, Klade CA. J. Am. Chem. Soc. 1989; 111: 4407
- 39 Danheiser RL, Becker DA. Heterocycles 1987; 25: 277
- 40 Saborit GV, Cativiela C, Jiménez AI, Bonjoch J, Bradshaw B. Beilstein J. Org. Chem. 2018; 14: 2597
- 41 Yadav VK, Sriramurthy V. Org. Lett. 2004; 6: 4495
- 42 Onnagawa T, Yamazaki M, Yoshimura T, Matsuo JI. Synlett 2018; 29: 2717
- 43 Dudnik AS, Xia Y, Li Y, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 7645
- 44 Pornet J, Miginiac L, Jaworski K, Randrianoelina B. Organometallics 1985; 4: 333
- 45 Danheiser RL, Dixon BR, Gleason RW. J. Org. Chem. 1992; 57: 6094
- 46 Evans DA, Aye Y. J. Am. Chem. Soc. 2007; 129: 9606
- 47 Rooke DA, Ferreira EM. J. Am. Chem. Soc. 2010; 132: 11926
- 48 Barczak NT, Rooke DA, Menard ZA, Ferreira EM. Angew. Chem. Int. Ed. 2013; 52: 7579
- 49 Allegretti PA, Ferreira EM. Org. Lett. 2011; 13: 5924
- 50 Puriņš M, Mishnev A, Turks M. J. Org. Chem. 2019; 84: 3595
- 51 González J, Santamaría J, Ballesteros A. Angew. Chem. Int. Ed. 2015; 54: 13678
- 52 Shiba T, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2013; 135: 13636
- 53 Quan Y, Zhang J, Xie Z. J. Am. Chem. Soc. 2013; 135: 18742
- 54 Kazem Shiroodi R, Rivera Vera CI, Dudnik AS, Gevorgyan V. Tetrahedron Lett. 2015; 56: 3251
- 55 Li T, Zhang L. J. Am. Chem. Soc. 2018; 140: 17439
- 56 Kanno H, Nakamura K, Noguchi K, Shibata Y, Tanaka K. Org. Lett. 2016; 18: 1654
- 57 Yeung C.-F, Chung L.-H, Lo H.-S, Chiu C.-H, Cai J, Wong C.-Y. Organometallics 2015; 34: 1963
- 58 McGee P, Bellavance G, Korobkov I, Tarasewicz A, Barriault L. Chem. Eur. J. 2015; 21: 9662
- 59 Liedtke R, Harhausen M, Fröhlich R, Kehr G, Erker G. Org. Lett. 2012; 14: 1448
- 60 Liedtke R, Tenberge F, Daniliuc CG, Kehr G, Erker G. J. Org. Chem. 2015; 80: 2240
- 61 Boussonnière A, Pan X, Geib SJ, Curran DP. Organometallics 2013; 32: 7445
- 62 Knölker H.-J, Jones PG, Pannek J.-B. Synlett 1990; 429
- 63 Knölker H.-J, Foitzik N, Graf R, Goesmann H. Angew. Chem. Int. Ed. 1993; 32: 1081
- 64 Knölker H.-J, Baum G, Graf R. Angew. Chem. Int. Ed. 1994; 33: 1612
- 65 Knölker H.-J, Graf R. Synlett 1994; 131
- 66 Knölker H.-J, Wanzl G. Synlett 1995; 378
- 67 Knölker H.-J, Foitzik N, Goesmann H, Graf R, Jones PG, Wanzl G. Chem. Eur. J. 1997; 3: 538
- 68 Danheiser RL, Takahashi T, Bertók B, Dixon BR. Tetrahedron Lett. 1993; 34: 3845
- 69 Monti H, Audran G, Monti J.-P, Léandri G. Synlett 1994; 403
- 70 Brengel GP, Rithner C, Meyers AI. J. Org. Chem. 1994; 59: 5144
- 71 Ball-Jones NR, Badillo JJ, Tran NT, Franz AK. Angew. Chem. Int. Ed. 2014; 53: 9462
- 72 Okamoto K, Tamura E, Ohe K. Angew. Chem. Int. Ed. 2014; 53: 10195
- 73 Li J, Sun C, Demerzhan S, Lee D. J. Am. Chem. Soc. 2011; 133: 12964
- 74 Fang R, Yang L, Wang Q. Organometallics 2012; 31: 4020
- 75 Suginome M, Takama A, Ito Y. J. Am. Chem. Soc. 1998; 120: 1930