Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(08): 1279-1286
DOI: 10.1055/s-0039-1691589
DOI: 10.1055/s-0039-1691589
paper
Microwave-Accelerated N-Acylation of Sulfoximines with Aldehydes under Catalyst-Free Conditions
The authors would like to thank the South African National Research Foundation (grant numbers 105213 and 105236), Aspen Pharmacare, and the South African Medical Research Council for their support.Further Information
Publication History
Received: 19 November 2019
Accepted after revision: 20 December 2019
Publication Date:
29 January 2020 (online)

Abstract
An efficient catalyst-free radical cross-coupling reaction between aromatic aldehydes and sulfoximines was developed. The reaction took place in the presence of N-bromosuccinimide as the radical initiator under microwave irradiation to afford the corresponding acylated sulfoximines in moderate to excellent yields (27 examples). This protocol proved to be rapid, easy to handle, and applicable to a broad scope of substrates.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691589.
- Supporting Information
-
References
- 1a Hartwig JF. Acc. Chem. Res. 1998; 31: 852
- 1b Nair V, Biju AT, Mathew SC, Babu BP. Chem. Asian J. 2008; 3: 810
- 1c Huffman LM, Stahl SS. J. Am. Chem. Soc. 2008; 130: 9196
- 1d Rajbongshi KK, Saikia I, Chanu LD, Roy S, Phukan P. J. Org. Chem. 2016; 81: 5423
- 1e Rit RK, Shankar M, Sahoo AK. Org. Biomol. Chem. 2017; 15: 1282
- 2a Bizet V, Hendriks CM. M, Bolm C. Chem. Soc. Rev. 2015; 44: 3378
- 2b Reggelin M, Zur C. Synthesis 2000; 1
- 2c Lücking U. Angew. Chem. Int. Ed. 2013; 52: 9399
- 2d Frings M, Bolm C, Blum A, Gnamm C. Eur. J. Med. Chem. 2017; 126: 225
- 2e Bizet V, Kowalczyk R, Bolm C. Chem. Soc. Rev. 2014; 43: 2426
- 2f Zhu Y, Loso MR, Watson GB, Sparks TC, Rogers RB, Huang JX, Gerwick BC, Babcock JM, Kelley D, Hegde VB, Nugent BM, Renga JM, Denholm I, Gorman K, DeBoer GJ, Hasler J, Meade T, Thomas JD. J. Agric. Food Chem. 2011; 59: 2950
- 2g Chen XY, Park SJ, Buschmann H, De Rosa M, Bolm C. Bioorg. Med. Chem. Lett. 2012; 22: 4307
- 2h Park SJ, Baars H, Mersmann S, Buschmann H, Baron JM, Amann PM, Czaja K, Hollert H, Bluhm K, Redelstein R, Bolm C. ChemMedChem 2013; 8: 217
- 2i Thota N, Makam P, Rajbongshi KK, Nagiah S, Abdul NS, Chuturgoon AA, Kaushik A, Lamichhane G, Somboro AM, Kruger HG, Govender T, Naicker T, Arvidsson PI. ACS Med. Chem. Lett. 2019; 10: 1457
- 3a Okamura H, Bolm C. Chem. Lett. 2004; 33: 482
- 3b Bolm C, Simić O. J. Am. Chem. Soc. 2001; 123: 3830
- 3c Frings M, Thomé I, Schiffers I, Pan F, Bolm C. Chem. Eur. J. 2014; 20: 1691
- 4a Harmata M, Hong X. Org. Lett. 2007; 9: 2701
- 4b Peraino NJ, Wheeler KA, Kerrigan NJ. Org. Lett. 2015; 17: 1735
- 5 Frings M, Thomé I, Bolm C. Beilstein J. Org. Chem. 2012; 8: 1443
- 6 Johnson CR. Acc. Chem. Res. 1973; 6: 341
- 7a Yu H, Li Z, Bolm C. Angew. Chem. Int. Ed. 2018; 57: 324
- 7b Tota A, Zenzola M, Chawner SJ, John-Campbell SS, Carlucci C, Romanazzi G, Degennaro L, Bull JA, Luisi R. Chem. Commun. 2017; 53: 348
- 7c Zhu H, Yu J.-T, Cheng J. Chem. Commun. 2016; 52: 11908
- 7d Gupta S, Chaudhary P, Muniyappan N, Sabiah S, Kandasamy J. Org. Biomol. Chem. 2017; 15: 8493
- 7e Gupta S, Baranwal S, Muniyappan N, Sabiah S, Kandasamy J. Synthesis 2019; 51: 2171
- 8a Rit RK, Yadav MR, Sahoo AK. Org. Lett. 2012; 14: 3724
- 8b Yadav MR, Rit RK, Sahoo AK. Org. Lett. 2013; 15: 1638
- 8c Rit RK, Yadav MR, Ghosh K, Shankar M, Sahoo AK. Org. Lett. 2014; 16: 5258
- 8d Yadav MR, Shankar M, Ramesh E, Ghosh K, Sahoo AK. Org. Lett. 2015; 17: 1886
- 9a Bolm C, Hackenberger CP. R, Simić O, Verrucci M, Müller D, Bienewald F. Synthesis 2002; 879
- 9b Hackenberger CP. R, Raabe G, Bolm C. Chem. Eur. J. 2004; 10: 2942
- 10 Garimallaprabhakaran A, Harmata M. Synlett 2011; 361
- 11 Noda H, Asada Y, Shibasaki M, Kumagai N. Chem. Commun. 2017; 53: 7447
- 12 Wang L, Priebbenow DL, Zou L.-H, Bolm C. Adv. Synth. Catal. 2013; 355: 1490
- 13 Qin W.-J, Li Y, Yu X, Deng W.-P. Tetrahedron 2015; 71: 1182
- 14 Porey A, Santra S, Guin J. Asian J. Org. Chem. 2016; 5: 870
- 15 Jiang W, Huang Y, Zhou L, Zeng Q. Sci. China: Chem. 2019; 62: 1213
- 16 Priebbenow DL, Bolm C. Org. Lett. 2014; 16: 1650
- 17 Muneeswara M, Kotha SS, Sekar G. Synthesis 2016; 48: 1541
- 18 Zou Y, Xiao J, Peng Z, Dong W, An D. Chem. Commun. 2015; 51: 14889
- 19 Zhao Z, Wang T, Yuan L, Jia X, Zhao J. RSC Adv. 2015; 5: 75386
- 20a Gawande MB, Shelke SN, Zboril R, Varma RS. Acc. Chem. Res. 2014; 47: 1338
- 20b Polshettiwar V, Varma RS. Acc. Chem. Res. 2008; 41: 629
- 20c de la Hoz A, Díaz-Ortiz Á, Moreno A. Chem. Soc. Rev. 2005; 34: 164
- 20d Caddick S. Tetrahedron 1995; 51: 10403
- 20e Khumalo MF, Akpan ED, Chinthakindi PK, Brasil Edikarlos M, Rajbongshi KK, Makatini MM, Govender T, Kruger HG, Naicker T, Arvidsson PI. RSC Adv. 2018; 8: 37503
- 21 Deka N, Sarma JC. J. Org. Chem. 2001; 66: 1947
- 22a Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6873
- 22b Tan CK, Yeung Y.-Y. Chem. Commun. 2013; 49: 7985
- 22c Thakur VV, Talluri SK, Sudalai A. Org. Lett. 2003; 5: 861
- 22d Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2008; 10: 1863
- 23 Bohnen C, Bolm C. Org. Lett. 2015; 17: 3011
- 25 Pimpasri C, Sumunnee L, Yotphan S. Org. Biomol. Chem. 2017; 15: 4320
- 26 Bala BD, Sharma N, Sekar G. RSC Adv. 2016; 6: 97152