RSS-Feed abonnieren
DOI: 10.1055/s-0039-1691598
Synthesis of 3-Oxoisoindoline-1-carboxamides through Sequential Four-Component Ugi Reaction/Oxidative Nucleophilic Substitution of Hydrogen
National Institute for Medical Research Development (NIMAD Grant No. 982736).Publikationsverlauf
Received: 13. Januar 2020
Accepted after revision: 25. Januar 2020
Publikationsdatum:
13. Februar 2020 (online)
Abstract
This paper describes a diversity-oriented approach to the formation of 3-oxoisoindoline-1-carboxamide derivatives utilizing the potential of the nitro group as a directing group. The reaction proceeds through a novel class of post-transformation reactions through a sequential four-component Ugi reaction/oxidative nucleophilic substitution of hydrogen. The 3-oxoisoindoline-1-carboxamide derivatives were synthesized in the presence of a base under mild reaction conditions with high regio- and chemoselectivity. The aerobic oxidation, high bond-forming efficiency, high atom economy, and good to excellent yields are the main advantages of this approach.
Key words
oxoisoindolinecarboxamides - Ugi reaction - multicomponent reaction - nucleophilic substitutionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691598.
- Supporting Information
-
References and Notes
- 1a Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 1b Sharma UK, Sharma N, Vachhani DD, Van der Eycken EV. Chem. Soc. Rev. 2015; 44: 1836
- 1c Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
- 1d Dömling A. Chem. Rev. 2006; 106: 17
- 1e Bariwal J, Kaur R, Voskressensky LG, Van der Eycken EV. Front. Chem. 2018; 6: 557
- 1f Multicomponent Reactions. 1 General Discussion and Reactions Involving a Carbonyl Compound as Electrophilic Component. Müller TJ. J. Thieme; Stuttgart: 2014
- 1g D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
- 1h Synthesis of Heterocycles Via Multicomponent Reactions I . Orru RV, Ruijter E. Springer Science & Business Media; Berlin: 2010
- 1i Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323
- 1j Cheng G, He X, Tian L, Chen J, Li C, Jia X, Li J. J. Org. Chem. 2015; 80: 11100
- 1k Polindara-García LA, Juaristi E. Eur. J. Org. Chem. 2016; 1095
- 2a Kotov AD, Prokaznikov MA, Antonova EA, Rusakov AI. Chem. Heterocycl. Compd. (Engl. Transl.) 2014; 50: 647
- 2b Schlosser M, Ruzziconi R. Synthesis 2010; 2111
- 2c Mąkosza M, Paszewski M. Pol. J. Chem. 2005; 79: 163
- 2d Mąkosza M. Synthesis 2011; 2341
- 2e Rocard L, Hudhomme P. Catalysts 2019; 9: 213
- 2f Trifilenkov AS, Ilyin AP, Kysil VM, Sandulenko YB, Ivachtchenko AV. Tetrahedron Lett. 2007; 48: 2563
- 3a Mąkosza M, Wojciechowsk K. Chem. Rev. 2004; 104: 2631
- 3b Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
- 4a Mąkosza M, Sulikowski D. J. Org. Chem. 2009; 74: 3827
- 4b Leen V, Gonzalvo VZ, Deborggraeve WM, Boens N, Dehaen W. Chem. Commun. 2010; 46: 4908
- 4c Bujok R, Mąkosza M. Chem. Commun. 2016; 52: 12650
- 4d Khutorianskyi VV, Sonawane M, Pošta M, Klepetářová B, Beier P. Chem. Commun. 2016; 52: 7237
- 4e Yu J, Moon HR, Y-Kim S, Kim JN. Bull. Korean Chem. Soc. 2016; 37: 112
- 5a Moskalev N, Barbasiewicz M, Mąkosza M. Tetrahedron 2004; 60: 347
- 5b Sulur M, Sharma P, Ramakrishnan R, Naidu R, Merifield E, Gill DM, Clarke AM, Thomson C, Butters M, Bachu S, Benison CH, Dokka N, Fong ER, Hose DR. J, Howell GP, Mobberley SE, Morton SC, Mullen AK, Rapai J, Tejas B. Org. Process Res. Dev. 2012; 16: 1746
- 5c Moskalev N, Mąkosza M. Tetrahedron Lett. 1999; 40: 5395
- 5d Moskalev N, Mąkosza MA. Heterocycles 2000; 52: 533
- 5e Mąkosza M, Wojciechowski K. Heterocycles 2001; 54: 445
- 5f Sundberg RJ. Indoles 1996
- 5g Wróbel Z. Eur. J. Org. Chem. 2000; 521
- 5h Wróbel Z. Synlett 2004; 1929
- 6a Adam W, Mąkosza M, Zhao C.-G, Surowiec M. J. Org. Chem. 2000; 65: 1099
- 6b Adam W, Mąkosza M, Stalinski K, Zhao C.-G. J. Org. Chem. 1998; 63: 4390
- 7 Rege PD, Johnson F. J. Org. Chem. 2003; 68: 6133
- 8 Kraus GA, Selvakumar N. J. Org. Chem. 1998; 63: 9846
- 9 Mąkosza M, Staliński K. Synthesis 1998; 1631
- 10 Mąkosza M, Kamieńska-Trela K, Paszewski M, Bechcicka M. Tetrahedron 2005; 61: 11952
- 11a Mąkosza M, Sulikowski D. Eur. J. Org. Chem. 2011; 6887
- 11b Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
- 11c Mąkosza M, Wojciechowski K. Chem. Heterocycl. Compd. (Engl. Transl.) 2015; 51: 210
- 12a Chen ZL, Zhu DY. In The Alkaloids: Chemistry and Pharmacology, Vol. 31 1987; Chap. 3: 67
- 12b Muller GW, Chen R, Huang S.-Y, Corral LG, Wong LM, Patterson RT, Chen Y, Kaplan G, Stirling DI. Bioorg. Med. Chem. Lett. 1999; 9: 1625
- 12c Kaur R, Manjal SK, Rawal RK, Kumar K. Bioorg. Med. Chem. 2017; 25: 4533
- 12d Shirasaka T, Kunitake T, Tsuneyoshi I. Brain Res. 2009; 1300: 105
- 12e Kato Y, Takemoto M, Achiwa K. Chem. Pharm. Bull. 1993; 41: 2003
- 12f Carney RW. J, De Stevens G. US 3641040, 1972
- 12g Lee J, Panek JS. J. Org. Chem. 2015; 80: 2959
- 12h Zhao XZ, Maddali K, Marchand C, Pommier Y, Burke TR. Jr. Bioorg. Med. Chem. 2009; 17: 5318
- 12i Meltzer HY. Drug Dev. Res. 1986; 9: 23
- 13a Sorbera LA, Leeson PA, Silvestre J, Castaner J. Drugs Future 2001; 26: 651
- 13b Stuk TL, Assink BK, Bates RC, Erdman DT. Jr, Fedij V, Jennings SM, Lassig JA, Smith RJ, Smith TL. Org. Process Res. Dev. 2003; 7: 851
- 13c Bourzat JD, Capet M, Cotrel C, Labaudiniere R, Pitchen P, Roussel G. US 4960779
- 14 Björe A, Boström J, Davidsson O, Emtenäs H, Gran U, Iliefski T, Kajanus J, Olsson R, Sandberg L, Strandlund G, Sundell J, Yuan Z.-Q. 2008
- 15a Balalaie S, Mirzaie S, Nikbakht A, Hamdan F, Rominger F, Navari R, Bijanzadeh HR. Org. Lett. 2017; 19: 6124
- 15b Balalaie S, Ramezani Kejani R, Ghabraie E, Darvish F, Rominger F, Hamdan F, Bijanzadeh HR. J. Org. Chem. 2017; 82: 12141
- 15c Mottaghi M, Khosravi H, Balalaie S, Rominger F. Org. Biomol. Chem. 2019; 17: 275
- 15d Balalaie S, Shamakli M, Nikbakht A, Alavijeh NS, Rominger F, Rostamizadeh S, Bijanzadeh HR. Org. Biomol. Chem. 2017; 15: 5737
- 15e Balalaie S, Shakeri P. Targets Heterocycl. Syst. 2018; 22: 468
- 16 3-Oxoisoindoline-1-carboxamides 6a–k: General ProcedureA 25 mL one-necked flask containing a magnetic stirrer bar was charged with the appropriate primary amine (1.0 mmol) and arylcarboxaldehyde (1.0 mmol) in MeOH (2.0 mL) at rt, and the mixture was stirred for 20 min. 3-Nitrobenzoic acid (4) (1.0 mmol) was then added and stirring was continued for 20 min. The appropriate isocyanide (1.0 mmol) was then added and the mixture was stirred for another 24 hours at rt. When the reaction was complete (TLC), the solvent was removed under vacuum and, without any purification, dry toluene was added to the residue. Cs2CO3 (2.0 mmol) was then added, and the mixture was stirred at rt until the reaction was complete. H2O (5 mL) was added and the aqueous phase was extracted with Et2O (3 × 10 mL). The organic phase was separated and washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo. Further purification was performed by column chromatography (silica gel). N-[1-(3-Bromophenyl)-2-(cyclohexylamino)-2-oxoethyl]-3-nitro-N-phenylbenzamide (5a)White solid; yield: 236 mg (88%); mp 231 °C. IR (KBr): 1351 and 1531 (NO2), 1649 (C=O) cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.19 (s, 1 H, H-Ar), 8.06 (d, J = 7.3 Hz, 1 H, H-Ar), 7.65 (d, J = 7.7 Hz, 1 H, H-Ar), 7.45 (s, 1 H, H-Ar), 7.41 (d, J = 7.9 Hz, 1 H, H-Ar), 7.33 (t, J = 8.0 Hz, 1 H, H-Ar), 7.18 (d, J = 7.7 Hz, 1 H, H-Ar), 7.11 (s, 1 H, H-Ar), 7.10–6.93 (m, 5 H, H-Ar), 6.17 [s, 1 H, −C(sp3)−H], 5.76 (d, J = 8.1 Hz, 1 H, NH), 3.92–3.86 (m, 1 H, H-Cy), 2.02–1.99 (m, 1 H, H-Cy), 1.95–1.89 (m, 1 H, H-Cy), 1.74–1.66 (m, 2 H, H-Cy), 1.63–1.60 (m, 1 H, H-Cy), 1.40–1.33 (m, 2 H, H-Cy), 1.23–1.07 (m, 3 H, H-Cy). 13C NMR (151 MHz, CDCl3): δ = 168.7, 167.6, 147.4, 139.9, 137.5, 136.4, 134.3, 133.4, 131.9, 130.5, 130.1, 128.9, 128.9, 128.8, 128.1, 124.3, 123.7, 122.5, 65.8, 49.1, 32.8, 25.4, 24.8, 24.7. HRMS-ESI: m/z [M + H]+ calcd for C27H27 79BrN3O4: 536.1554; found: 536.1559.1-(3-Bromophenyl)-N-cyclohexyl-5-nitro-3-oxo-2-phenylisoindoline-1-carboxamide (6a)Pale-yellow solid; yield: 248 mg (93%); mp 277 °C. IR (KBr): 1350 and 1524 (NO2), 1651 (C=O) cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.75 (s, 1 H, H-Ar), 8.46 (d, J = 8.6 Hz, 1 H, H-Ar), 7.80 (d, J = 8.4 Hz, 1 H, H-Ar), 7.40 (d, J = 7.7 Hz, 1 H, H-Ar), 7.36 (s, 1 H, H-Ar), 7.31–7.27 (m, 2 H, H-Ar), 7.23 (t, J = 7.3 Hz, 1 H, H-Ar), 7.17 (d, J = 8.1 Hz, 2 H, H-Ar), 7.08 (t, J = 7.7 Hz, 1 H, H-Ar), 7.06 (t, J = 7.7 Hz, 1 H, H-Ar), 6.20 (d, J = 8.1 Hz, 1 H, NH), 3.78–3.71 (m, 1 H, H-Cy), 1.88–1.83 (m, 1 H, H-Cy), 1.64–1.57 (m, 3 H, H-Cy), 1.34–1.23 (m, 3 H, H-Cy), 1.10–0.99 (m, 2 H, H-Cy), 0.90–0.84 (m, 1 H, H-Cy). 13C NMR (151 MHz, CDCl3): δ = 166.6, 165.8, 151.6, 149.2, 138.4, 135.7, 132.2, 131.5, 131.3, 130.1, 129.4, 128.2, 127.6, 127.1, 125.5, 125.4, 122.8, 119.9, 77.0, 49.4, 32.5, 32.2, 25.1, 24.5, 24.4. HRMS-ESI: m/z [M + H]+ calcd for C27H25 79BrN3O4: 534.1165; found: 534.1173.2-Buta-2,3-dien-1-yl-N-cyclohexyl-5-nitro-1-(3-nitrophenyl)-3-oxoisoindoline-1-carboxamide (8a)Pale-yellow solid; yield: 212 mg (89%); mp 285 °C. IR (KBr): 1345 and 1533 (NO2), 1953 (C=C=C), 1656 (C=O) cm–1.1H NMR (600 MHz, CDCl3): δ = 8.63 (s, 1 H, H-Ar), 8.50 (d, J = 8.4 Hz, 1 H, H-Ar), 8.26 (d, J = 9.0 Hz, 1 H, H-Ar), 8.05 (s, 1 H, H-Ar), 7.85 (d, J = 8.4 Hz, 1 H, H-Ar), 7.56 (t, J = 8.1 Hz, 1 H, H-Ar), 7.38 (d, J = 7.9 Hz, 1 H, H-Ar), 6.56 (d, J = 8.0 Hz, 1 H, –NH), 5.14 (p, J = 6.7 Hz, 1 H, allenic H), 4.76–4.72 (m, 1 H, allenic H), 4.66–4.62 (m, 1 H, allenic H), 4.13–4.08 (m, 1 H, –CH2-N), 3.89–4.80 (m, 2 H, –CH2-N and H-Cy), 2.12–2.05 (m, 1 H, H-Cy), 1.83–1.77 (m, 1 H, H-Cy), 1.76–1.61 (m, 3 H, H-Cy), 1.46–1.39 (m, 1 H, H-Cy), 1.35–1.24 (m, 2 H, H-Cy), 1.18–1.10 (m, 1 H, H-Cy), 1.04–0.97 (m, 1 H, H-Cy). 13C NMR (151 MHz, CDCl3): δ = 208.8, 167.2, 165.7, 151.0, 149.4, 148.4, 138.2, 134.5, 131.7, 129.9, 128.2, 125.5, 124.1, 124.0, 119.3, 85.6, 77.5, 75.3, 49.7, 41.3, 32.9, 32.4, 25.2, 24.8, 24.7. HRMS-ESI: m/z [M + H]+ calcd for C25H25N4O6: 477.1680; found: 477.1686.Crystallographic data for 6a and 6b were collected by using APEX-II software, integrated by using SAINT, and corrected for absorption by using a multiscan approach (SADABS). Final cell constants were determined from full least-squares refinement of all observed reflections. The structure was solved by using intrinsic phasing (SHELXT). All non-H atoms were located in subsequent difference maps and refined anisotropically with SHELXL-2014/7.19 H atoms were added at calculated positions and refined with a riding model.
- 17 CCDC 1968041 and 1968042 contains the supplementary crystallographic data for compounds 6a an 6b, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 18 Amiri K, Khosravi H, Balalaie S, Golmohammadi F, Anwar MU, Al-Harrasi A. Org. Biomol. Chem. 2019; 17: 8858