Subscribe to RSS
DOI: 10.1055/s-0039-1691600
Advanced Catalyst-Free Pseudo-Six-Component Synthesis of Tetrahydrodipyrazolopyridines in Water by Using Ammonium Carbonate as an Ecofriendly Source of Nitrogen
We gratefully thank the Yazd University Research Council for financial support.Publication History
Received: 16 October 2019
Accepted after revision: 04 January 2020
Publication Date:
04 February 2020 (online)

Abstract
This work describes an improved environmentally friendly method for the synthesis of tetrahydrodipyrazolopyridines (THDPPs) in water through a catalyst-free pseudo-six-component reaction of alkyl acetoacetates, hydrazine hydrate, and ammonium carbonate with an aldehyde in a mole ratio of 2:2:1:1 at room temperature. The ammonium carbonate serves as a green source of nitrogen for the central 1,4-dihydropyridine ring in the THDPPs. Methyl acetoacetate reacts faster than either ethyl or propyl acetoacetate in this method. The product precipitates during the reaction and is simply collected by filtration. Advantages of this environmentally benign method include no use of an organic solvent, no hazardous waste, rapid clean reactions, and excellent yields of products.
-
References and Notes
- 1a Gawande MB, Bonifácio VD, Luque R, Branco PS, Varma RS. Chem. Soc. Rev. 2013; 42: 5522
- 1b Kumaravel K, Vasuki G. Green Chem. 2009; 11: 1945
- 1c Li C.-J, Anastas PT. Chem. Soc. Rev. 2012; 41: 1413
- 2a Narayan S, Muldoon J, Finn M, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
- 2b Butler RN, Coyne AG. Org. Biomol. Chem. 2016; 14: 9945
- 2c Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
- 3 Lipshutz BH, Ghorai S, Cortes-Clerget M. Chem. Eur. J. 2018; 24: 6672
- 4a Katada M, Kitahara K, Iwasa S, Shibatomi K. Synlett 2018; 29: 2408
- 4b Cui H.-L, Shi Y, Deng H.-Q, Lei J.-J, Xu X.-J, Tian X, Qiao J, Zhou L. Synlett 2019; 30: 167
- 4c Kalita SJ, Deka DC. Synlett 2018; 29: 477
- 5a Tian Y, Liu Q, Liu Y, Zhao R, Li G, Xu F. Tetrahedron Lett. 2018; 59: 1454
- 5b Shaabani A, Hooshmand SE. Ultrason. Sonochem. 2018; 40: 84
- 5c Han M.-Y, Lin J, Li W, Luan W.-Y, Mai P.-L, Zhang Y. Green Chem. 2018; 20: 1228
- 6 Yang J, Mei F, Fu S, Gu Y. Green Chem. 2018; 20: 1367
- 7a Abu-Melha S. Arch. Pharm (Weinheim, Ger.) 2013; 346: 912
- 7b Gudmundsson KS, Johns BA, Allen SH. Bioorg. Med. Chem. Lett. 2008; 18: 1157
- 8 El-Borai MA, Rizk HF, Beltagy DM, El-Deeb IY. Eur. J. Med. Chem. 2013; 66: 415
- 9a Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
- 9b Isambert N, Lavilla R. Chem. Eur. J. 2008; 14: 8444
- 9c Gu Y, De Sousa R, Frapper G, Bachmann C, Barrault J, Jérôme F. Green Chem. 2009; 11: 1968
- 9d Müller TJ. J. Chem. Heterocycl. Comp. 2017; 53: 381
- 10a Pirrung MC, Sarma KD. J. Am. Chem. Soc. 2004; 126: 444
- 10b Kumaravel K, Vasuki G. Curr. Org. Chem. 2009; 13: 1820
- 10c Wu J, Bishop L, Guo J, Guo Z. Synlett 2019; 30: 348
- 11 Tamaddon F, Razmi Z, Jafari AA. Tetrahedron Lett. 2010; 51: 1187
- 12a Tamaddon F, Ghazi S. Catal. Commun. 2015; 72: 63
- 12b Tamaddon F, Alizadeh M. Tetrahedron Lett. 2014; 55: 3588
- 13a Tamaddon F, Tadayonfar S. J. Mol. Liq. 2019; 280: 71
- 13b Tamaddon F, Tadayonfar S. J. Mol. Liq. 2019; 283: 51
- 14a Lehninger AL, Cox MM, Nelson DL. Lehninger Principles of Biochemistry, 4th ed. W. H. Freeman; New York: 2005: 190
- 14b Khoshneviszadeh M, Edraki N, Javidnia K, Alborzi A, Pourabbas B, Mardaneh J, Miri R. Bioorg. Med. Chem. 2009; 17: 1579
- 14c Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
- 14d Ghosh P, Mukherjee P, Das AR. RSC Adv. 2013; 3: 8220
- 15a Zhao K, Lei M, Ma L, Hu L. Monatsh. Chem. 2011; 142: 1169
- 15b Shabalala NG, Pagadala R, Jonnalagadda SB. Ultrason. Sonochem. 2015; 27: 423
- 16 Safaei-Ghomi J, Shahbazi-Alavi H, Sadeghzadeh R, Ziarati A. Res. Chem. Intermed. 2016; 42: 8143
- 17 Maleki A, Hajizadeh Z, Salehi P. Sci. Rep. 2019; 9: 5552
- 18 Xu H, Li L, Wang Z, Xi J, Rong L. Res. Chem. Intermed. 2018; 44: 3211
- 19 MaGee DI, Dabiri M, Salehi P, Koohshari M, Hajizadeh Z. ARKIVOC 2014; (iv): 204
- 20 Vanegas S, Rodríguez D, Ochoa-Puentes C. ChemistrySelect 2019; 4: 3131
- 21 Tetrahydrodipyrazolopyridines; General Procedure (NH4)2CO3 (2.0 mmol) was added to a stirred mixture of the appropriate aldehyde (2.0 mmol), alkyl acetoacetate (4.0 mmol), and hydrazine hydrate (4.0 mmol) in H2O (1.0 mL), and the mixture was stirred vigorously at r.t. for the appropriate time (Table 3). The precipitated product was separated by simple filtration. 4-(3,5-Dimethyl-1,4,7,8-tetrahydrodipyrazolo[3,4-b:4′,3′-e]pyridin-4-yl)phenol (Table [3], Entry 3) White solid; yield: 244.1 mg (92%); mp 267–269 °C (Lit.15 267–268 °C). FTIR (KBr): 3234 (overlapped NH and OH stretching), 2935 (CH stretching), 1600 cm–1 (C=N stretching). 1H NMR (400 MHz, DMSO-d 6): δ = 2.05 (s, 6 H, 2 CH3), 4.68 (s, 1 H, CH), 6.57 (d, J = 8 Hz, 2 H, Harom), 6.89 (d, J = 8 Hz, 2 H, ArH), 9.15 (s, OH), 11.52 (s, 3 H, 3 NH). 13C NMR (100 MHz, DMSO-d 6): δ = 10.35, 31.76, 104.51, 114.45, 128.25, 133.36, 139.75, 155.05, 161.05. 3,5-Dimethyl-4-(4-tolyl)-1,4,7,8-tetrahydrodipyrazolo[3,4-b:4′,3′-e]pyridine (Table [3], Entry 5) White solid: 245.8 mg (88%); mp 244–246 °C (Lit.15 244–246 °C). FTIR (KBr): 3170 (NH stretching), 2920 (CH stretching), 1610 (C=N stretching), 1520 (C=C aromatic), 1139 cm–1 (C–N stretching). 1H NMR (400 MHz, DMSO-d 6): δ = 2.1 (s, 6 H, 2 CH3), 2.20 (s, 3 H, p-CH3), 4.78 (s, 1 H, CH), 6.99–7.00 (m, 4 H, Harom), 11.25 (s, 3 H, 3 NH). 13C NMR (100 MHz, DMSO-d 6): δ = 10.85, 20.98, 32.85, 104.85, 127.82, 128.83, 134.70, 140.20, 140.75, 161.50. [4-(3,5-Dimethyl-1,4,7,8-tetrahydrodipyrazolo[3,4-b:4′,3′-e]pyridin-4-yl)phenyl]dimethylamine (Table [3], Entry 9) Yellow-orange solid: 299.1mg (97%); mp 250–252 °C. FTIR (KBr): 3514, 3168 (NH stretching), 2942 (CH stretching), 1608 (C=N stretching), 1520 (C=C arom), 1139 cm–1 (C–N stretching). 1H NMR (400 MHz, DMSO-d 6): δ = 2.26 (s, 6 H, 2 CH3), 2.91 (s, 6 H, 2 p-CH3), 4.9 (s, 1 H, CH), 6.75 (d, J = 8 Hz, 2 H, Harom), 7.3 (d, J = 8 Hz, 2 H, Harom), 11.54 (s, 3 H, 3 NH). 3,5-Dimethyl-4-(4-nitrophenyl)-1,4,7,8-tetrahydrodipyrazolo[3,4-b:4′,3′-e]pyridine (Table [3], Entry 11) Cream solid: 291.7 mg (94%); mp 333–335 °C (Lit.15 >300 °C). FTIR (KBr): 3250 (NH stretching), 2985 (CH stretching), 1605 (C=N stretching), 1489 (overlapped asymm stretching NO2 with C=C arom), 1352 (NO2 symm stretching), 753 cm–1 (out-of-plane bending C–H, para-substituted). 1H NMR (400 MHz, DMSO-d 6): δ = 2.1 (s, 6 H, 2 CH3), 4.95 (s, 1 H, CH), 7.35 (d, J = 8 Hz, 2 H, Harom), 8.1 (d, J = 8 Hz, 2 H, Harom), 11.20 (s, 3 H, 3 NH). 13C NMR (100 MHz, DMSO-d 6): δ = 10.70, 33.40, 103.60, 123.40, 129.20, 140.20, 146.1, 152.25, 161.35.