Synlett 2020; 31(10): 977-981
DOI: 10.1055/s-0039-1691737
letter
© Georg Thieme Verlag Stuttgart · New York

Practical Approach for the Preparation of α-Keto Amides by Direct Aminocarbonylation of Carboxylic Esters with a Carbamoylsilane

Yuling Han
a   College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. of China   eMail: jjxxcc2002@yahoo.com
,
Shenghua Han
b   College of Chemistry and Engineering, Shanxi Datong University, Datong 037009, P. R. of China   eMail: hanshenghua@sina.com.cn
,
Jiangwen Ma
a   College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. of China   eMail: jjxxcc2002@yahoo.com
,
Weidong Li
a   College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. of China   eMail: jjxxcc2002@yahoo.com
,
Jianxin Chen
a   College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. of China   eMail: jjxxcc2002@yahoo.com
› Institutsangaben
This research was supported by the Shanxi Province Foundation for Returnees (No. 0713), the Natural Science Foundation of Shanxi Province (No. 2012011046-9) and Foundation of Shanxi Normal University (No. SD2015CXXM-83), P. R. of China.
Weitere Informationen

Publikationsverlauf

Received: 05. Dezember 2019

Accepted after revision: 03. Februar 2020

Publikationsdatum:
26. Februar 2020 (online)


Abstract

A novel and practical method has been developed for the preparation of α-keto amides by a catalyst-free aminocarbonylation of carboxylic esters with N,N-dimethylcarbamoyl(trimethyl)silane under neutral conditions. A new protocol for the synthesis of vicinal tricarbonyl compounds was also developed by using this method. In the case of diesters, only one ester group reacted selectively with 1.2 equivalents of the carbamoylsilane, leading to the formation of a single α-keto amide. The reaction was suitable for aryl, hetaryl, or open-chain esters containing strongly electron-withdrawing groups.

Supporting Information

 
  • References and Notes

    • 1a Liu Y, Wu J, Jin Z, Jiang H. Synlett 2018; 29: 1061
    • 1b Toste FD, Sigman MS, Miller SJ. Acc. Chem. Res. 2017; 50: 609
    • 1c Lee SH, Kyung H, Yokota R, Goto T, Oe T. Chem. Res. Toxicol. 2015; 28: 59
    • 1d Morris WJ, Muppalla KK, Cowden C, Ball RG. J. Org. Chem. 2013; 78: 706
    • 1e Zhang Z, Zhang Q, Ni Z, Liu Q. Chem. Commun. 2010; 46: 1269
    • 1f Tomita D, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 6946
    • 1g Bode JW, Fox RN, Baucom KD. Angew. Chem. Int. Ed. 2006; 45: 1248
    • 1h Tomaszewski MJ, Boisvert L, Jin S. Tetrahedron Lett. 2009; 50: 1435
    • 1i Miyake FY, Yakushijin K, Horne DA. Org. Lett. 2002; 4: 941
    • 1j Taylor MJ, Hoffman TZ, Yli-Kauhaluoma JT, Lerner RA, Janda KD. J. Am. Chem. Soc. 1998; 120: 12783
    • 1k Swindells ND. C, White PS, Findlay JA. Can. J. Chem. 1978; 56: 2491
    • 1l Tanaka H, Kuroda A, Marusawa H, Hatanaka H, Kino T, Goto T, Hashimoto M, Taga T. J. Am. Chem. Soc. 1987; 109: 5031
    • 1m Schreiber SL. Science 1991; 251: 283
    • 2a Ocain TD, Rich DH. J. Med. Chem. 1992; 35: 451
    • 2b Curtin M, Glaser K. Curr. Med. Chem. 2003; 10: 2373
    • 2c Wada CK, Frey RR, Ji Z, Curtin ML, Garland RB, Holms JH, Li J, Pease LJ, Guo J, Glaser KB, Marcotte PA, Richardson PL, Murphy SS, Bouska JJ, Tapang P, Magoc TJ, Albert DH, Davidsen SK, Michaelides MR. Bioorg. Med. Chem. Lett. 2003; 13: 3331
    • 2d Montalban AG, Boman E, Chang C.-D, Ceide SC, Dahl R, Dalesandro D, Delaet NG. J, Erb E, Ernst JT, Gibbs A, Kahl J, Kessler L, Kucharski J, Lum C, Lundström J, Miller S, Nakanishi H, Roberts E, Saiah E, Sullivan R, Urban J, Wang Z, Larson CJ. Bioorg. Med. Chem. Lett. 2010; 20: 4819
    • 2e Wang X.-J, Etzkorn FA. Biopolymers 2006; 84: 125
    • 2f Cai J, Robinson J, Belshaw S, Everett K, Fradera X, van Zeeland M, van Berkom L, van Rijnsbergen P, Popplestone L, Baugh M, Dempster M, Bruin J, Hamilton W, Kinghorn E, Westwood P, Kerr J, Rankovic Z, Arbuckle W, Bennett DJ, Jones PS, Long C, Martin I, Uitdehaag JC. M, Meulemans T. Bioorg. Med. Chem. Lett. 2010; 20: 6890
    • 2g Six DA, Barbayianni E, Loukas V, Constantinou-Kokotou V, Hadjipavlou-Litina D, Stephens D, Wong AC, Magrioti V, Moutevelis-Minakakis P, Baker FS, Dennis EA, Kokotos G. J. Med. Chem. 2007; 50: 4222
    • 2h Kokotos G, Kotsovolou S, Six DA, Constantinou-Kokotou V, Beltzner CC, Dennis EA. J. Med. Chem. 2002; 45: 2891
    • 3a Chen J, Chen X, Bois-Choussy M, Zhu J. J. Am. Chem. Soc. 2006; 128: 87
    • 3b Papanikos A, Rademann J, Mesal M. J. Am. Chem. Soc. 2001; 123: 2176
    • 4a Wipf P, Kim H. J. Org. Chem. 1993; 58: 5592
    • 4b Han W, Jiang X, Hu Z, Wasserman ZR, Decicco CP. Bioorg. Med. Chem. Lett. 2005; 15: 3487
    • 5a Ai-Rashid ZF, Johnson WL, Hsung RP, Wei Y, Yao P.-Y, Lin R, Zhao K. J. Org. Chem. 2008; 73: 8780
    • 5b Müller P, Godoy J. Tetrahedron Lett. 1982; 23: 3661
  • 6 Wasserman HH, Petersen AK, Xia M. Tetrahedron 2003; 59: 6771
  • 7 Song B, Wang S, Sun C, Deng H, Xu B. Tetrahedron Lett. 2007; 48: 8982
    • 8a Yang Z, Zhang Z, Meanwell NA, Kadow JF, Wang T. Org. Lett. 2002; 4: 1103
    • 8b Zhu J, Wong H, Zhang Z, Yin Z, Kadow JF, Meanwell NA, Wang T. Tetrahedron Lett. 2005; 46: 3587
    • 9a Li Z, Ortega-Vilain A.-C, Patil GS, Chu D.-L, Foreman JE, Eveleth DD, Powers JC. J. Med. Chem. 1996; 39: 4089
    • 9b Singh RP, Shreeve JM. J. Org. Chem. 2003; 68: 6063
    • 10a Liu J, Zhang R, Wang S, Sun W, Xia C. Org. Lett. 2009; 11: 1321
    • 10b Ozawa F, Soyama H, Yanagihara H, Aoyama I, Takino H, Izawa K, Yamamoto T, Yamamoto A. J. Am. Chem. Soc. 1985; 107: 3235
    • 11a Liu Q, Rovis T. Org. Lett. 2009; 11: 2856
    • 11b Faggi C, Neo AG, Marcaccini S, Menchi G, Revuelta J. Tetrahedron Lett. 2008; 49: 2099
    • 12a Chen JJ, Deshpande SV. Tetrahedron Lett. 2003; 44: 8873
    • 12b Mossetti R, Pirali T, Tron GC, Zhu J. Org. Lett. 2010; 12: 820
  • 13 Sibi MP, Marvin M, Sharma R. J. Org. Chem. 1995; 60: 5016
    • 14a Ying W.-W, Zhu W.-M, Liang H.-Z, Wei W.-T. Synlett 2018; 29: 215
    • 14b Thirukovel NS, Balaboina R, Vadde R, Vasam CS. Tetrahedron Lett. 2018; 59: 3749
    • 14c Fan W, Shi D, Feng B. Tetrahedron Lett. 2015; 56: 4638
    • 14d Dutta S, Kotha SS, Sekar G. RSC Adv. 2015; 5: 47265
    • 14e Giustiniano M, Mercalli V, Cassese H, Di Maro S, Galli U, Novellino E, Tron GC. J. Org. Chem. 2014; 79: 6006
    • 14f Kotha SS, Chandrasekar S, Sahu S, Sekar G. Eur. J. Org. Chem. 2014; 7451
    • 14g Liu L, Du L, Zhang-Negrerie D, Du Y, Zhao K. Org. Lett. 2014; 16: 5772
    • 14h Mupparapu N, Khan S, Battula S, Kushwaha M, Gupta AP, Ahmed QN, Vishwakarma RA. Org. Lett. 2014; 16: 1152
    • 14i Shaw AY, Denning CR, Hulme C. Tetrahedron Lett. 2012; 53: 4151
    • 14j Wei W, Shao Y, Hu H, Zhang F, Zhang C, Xu Y, Wan X. J. Org. Chem. 2012; 77: 7157
    • 14k Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 15a Chen J, Cunico RF. J. Org. Chem. 2004; 69: 5509
    • 15b Ma F, Liu H, Chen J.-X. Tetrahedron Lett. 2016; 57: 5246
    • 16a Li W, Han Y, Chen J. Tetrahedron 2017; 73: 5813
    • 16b Yao Y, Li W, Tong W, Chen J. Youji Huaxue 2015; 35: 223
    • 16c Yao Y, Tong W, Chen J. Mendeleev Commun. 2014; 24: 176
    • 16d Chen X, Chen J. Mendeleev Commun. 2013; 23: 106
    • 16e Ma F, Chen J. Acta Chim. Sin. (Engl. Ed.) 2013; 71: 1118
    • 16f Li W, Han S, Liu Y, Chen J. Youji Huaxue 2017; 37: 2423
  • 17 Cunico RF, Rodriguez Motta A. Org. Lett. 2005; 7: 771
    • 18a Yonekawa M, Furusho Y, Sei Y, Takata T, Endo T. Tetrahedron 2013; 69: 4076
    • 18b Liu Y, Zhang Z, Wen Y, Zhang G, Li Z, Bi J, Ma N, Liu T, Liu Q. J. Org. Chem. 2017; 82: 3901
    • 19a Adlington RM, Baldwin JE, Catterick D, Pritchard GJ. J. Chem. Soc. Perkin Trans. 1 2001; 668
    • 19b Wasserman HH, Rotello VM, Williams DR, Benbow JW. J. Org. Chem. 1989; 54: 2785
    • 19c Altuna-Urquijo M, Gehre A, Stanforth SP, Tarbit B. Tetrahedron 2009; 65: 975
    • 20a Rubin MB. Chem. Rev. 1975; 75: 177
    • 20b Hoffman RV, Kim HO, Wilson AL. J. Org. Chem. 1990; 55: 2820
    • 20c Wang L.-Z, An X.-L, Ge L.-S, Jin J.-H, Li X.-Y, Deng W.-P. Tetrahedron 2014; 70: 3788
    • 20d Yuki T, Yonekawa M, Matsumoto K, Sei Y, Tomita I, Endo T. Tetrahedron 2016; 72: 4783
    • 20e Han Y, Li Y, Han S, Chen J. Synthesis 2019; 51: 2977
  • 21 Cunico RF, Pandey RK. J. Org. Chem. 2005; 70: 9048
  • 22 Aminocarbonylation of Carboxylic Esters with N,N-Dimethylcarbamoyl(trimethyl)silane (2); General Procedure A Schlenk tube equipped with a Teflon vacuum stopcock and micro-stirrer bar was flame-heated under vacuum and refilled with Ar. The appropriate ester (0.5 mmol) and anhyd toluene (1.5 mL) were added at ice-bath temperature. After 20 min, carbamoylsilane 2 (0.6 mmol) was added and the tube was sealed. The mixture was stirred at 110 °C until no carbamoylsilane 2 could be detected by TLC. For the reactions shown in Tables 1 and 2, CH2Cl2 (5 mL), H2O (2 mL), and concd HCl (0.5 mL) were added, and the mixture was stirred for 2 h at r.t. The organic layer was then decanted and the aqueous phase was extracted with CH2Cl2 (2 × 5 mL). The combined organic layers were dried (MgSO4) and concentrated to afford the crude product, which was purified by column chromatography (silica gel) to afford α-keto amides 3 or 5. For the reactions shown in Table 3, entries 1–3, the residue was directly isolated by Kugelrohr distillation to give product 7a. For the reactions shown in Table 3, entry 4 and Scheme 2, volatiles were removed under vacuum, and the residue was purified by chromatography (silica gel, PE–EtOAc) to yield products 7d and 9, respectively. N,N-Dimethyl-2-(4-nitrophenyl)-2-oxoacetamide (3a) Yellowish solid; yield: 76.8 mg (69.1%, 0.5 mmol); mp 137.0–138.0 °C. IR (KBr): 1698, 1650, 1512 cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.38–8.16 (m, 4 H), 3.17 (s, 3 H), 3.03 (s, 3 H). 13C NMR (150.8 MHz, CDCl3): δ = 189.3, 165.6, 151.1, 137.5, 130.8, 124.1, 37.1, 34.3. Anal. Calcd for C10H10N2O4: C, 54.05; H, 4.54; N, 12.61. Found: C, 54.19; H, 4.58; N, 12.55. 2-Hydroxy-N,N,N′,N′-tetramethyl-2-(trifluoromethyl)malon­amide (7a) Purified by Kugelrohr distillation to give a colorless solid; yield: 56.9 mg (47.0%, 0.5 mmol); mp 118.0–120.0 °C. IR (KBr): 3278, 1658, 1414 cm–1. 1H NMR (600 MHz, CDCl3): δ = 5.64 (s, 1 H,), 3.09 (s, 6 H), 3.01 (s, 6 H). 13C NMR (150.8 MHz, CDCl3): δ = 164.4, 123.6, 121.7, 37.8, 37.2. 19F NMR (564 MHz, CDCl3): δ = –74.4. Anal. Calcd for C8H13F3N2O3: C, 39.67; H, 5.41; N, 11.57. Found: C, 39.79; H, 5.38; N, 11.36.3,3,3-Trichloro-2-ethoxy-2-hydroxy-N,N-dimethylpropanamide (7d)Directly purified by flash chromatography (silica gel) to give a slightly brown liquid; yield: 67.7 mg (51.2%, 0.5 mmol). IR (KBr): 3368, 1768, 1535 cm–1. 1H NMR (600 MHz, CDCl3): δ = 4.43–4.39 (m, 2 H), 3.21 (s, 3 H), 3.07 (s, 3 H), 1.62 (s, 1 H), 1.42–1.36 (m, 3 H). 13C NMR (150.8 MHz, CDCl3): δ = 163.6, 161.8, 79.7, 64.6, 38.5, 37.9, 13.7. Anal. Calcd for C7H12Cl3NO3: C, 31.78; H, 4.57; N, 5.29. Found: C, 31.81; H, 4.49; N, 5.56.Ethyl 3-(Dimethylamino)-2,3-dioxopropanoate (9)Colorless liquid; yield: 58.1 mg (67.1%, 0.5 mmol). IR (KBr): 1768, 1735, 1654, 1455 cm–1. 1H NMR (600 MHz, CDCl3): δ = 4.40 (q, J = 7.2 Hz, 2 H), 3.07 (s, 3 H), 3.06 (s, 3 H), 1.39 (t, J = 7.2 Hz, 3 H). 13C NMR (150.8 MHz, CDCl3): δ = 180.8, 164.0, 160.5, 63.3, 36.8, 34.6, 14.0. Anal. Calcd for C7H11NO4: C, 48.55; H, 6.40; N, 8.09. Found: C, 48.68; H, 6.60; N, 7.90.