Synthesis 2020; 52(12): 1833-1840
DOI: 10.1055/s-0039-1691740
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2,4-Diarylquinoline Derivatives via Chloranil-Promoted Oxidative Annulation and One-Pot Reaction

Dongping Cheng
a   College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Xianhang Yan
a   College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Jing Shen
a   College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Yueqi Pu
a   College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Xiaoliang Xu
b   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: chengdp@zjut.edu.cn
,
Jizhong Yan
a   College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
› Author Affiliations
The authors are grateful to the Natural Science Foundation of China (21602197) and the Natural Science Foundation of Zhejiang Province (LY18B020018).
Further Information

Publication History

Received: 24 December 2019

Accepted after revision: 06 February 2020

Publication Date:
24 February 2020 (online)


Abstract

An oxidative annulation for the synthesis of 2,4-diarylquinolines from o-allylanilines is disclosed that uses recyclable reagent Chloranil­ as the oxidant. The corresponding products are obtained in moderate to excellent yields. Furthermore, a one-pot access to 2,4-di­aryl­quinolines from easily available anilines and 1,3-diarylpropenes is described as a highly atom-efficient protocol that involves oxidative coupling, rearrangement, and oxidative annulation.

Supporting Information

 
  • References

  • 1 Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC. J. Med. Chem. 2001; 44: 2374
  • 2 Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
  • 3 Praveen C, DheenKumar P, Muralidharan D, Perumal PT. Bioorg. Med. Chem. Lett. 2010; 20: 7292
  • 4 Mukherjee S, Pal M. Drug Discovery Today 2013; 18: 389
    • 5a Andrews S, Burgess SJ, Skaalrud D, Kelly JX, Peyton DH. J. Med. Chem. 2010; 53: 916
    • 5b Tejería A, Pérez-Pertejo Y, Reguera RM, Carbajo-Andrés R, Balaña-Fouce R, Alonso C, Martin-Encinas E, Selas A, Rubiales G, Palacios F. Eur. J. Med. Chem. 2019; 162: 18
    • 5c Hu Y.-Q, Gao C, Zhang S, Xu L, Xu Z, Feng L.-S, Wu X, Zhao F. Eur. J. Med. Chem. 2017; 139: 22
    • 6a Jenekhe SA, Lu L, Alam MM. Macromolecules 2001; 34: 7315
    • 6b Zhang Y, Sigman MS. J. Am. Chem. Soc. 2007; 129: 3076
    • 6c Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, Liu X. Chem. Soc. Rev. 2014; 43: 3259
    • 7a Kouznetsov V, Mendez L, Gómez C. Curr. Org. Chem. 2005; 9: 141
    • 7b Madapa S, Tusi Z, Batra S. Curr. Org. Chem. 2008; 12: 1116
    • 7c Majumder A, Gupta R, Jain A. Green Chem. Lett. Rev. 2013; 6: 151
    • 7d Khusnutdinov RI, Bayguzina AR, Dzhemilev UM. J. Organomet. Chem. 2014; 768: 75
    • 7e Chelucci G, Porcheddu A. Chem. Rec. 2017; 17: 200
    • 7f Batista VF, Pinto DC. G. A, Silva AM. S. ACS Sustainable Chem. Eng. 2016; 4: 4064
    • 7g Nainwal LM, Tasneem S, Akhtar W, Verma G, Khan MF, Parvez S, Shaquiquzzaman M, Akhter M, Alam MM. Eur. J. Med. Chem. 2019; 164: 121
    • 8a Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
    • 8b Liberto NA, Simões JB, de Paiva Silva S, da Silva CJ, Modolo LV, de Fátima Â, Silva LM, Derita M, Zacchino S, Zuñiga OM. P, Romanelli GP, Fernandes SA. Bioorg. Med. Chem. 2017; 25: 1153
    • 8c Alonso C, Fuertes M, Martín-Encinas E, Selas A, Rubiales G, Tesauro C, Knudssen BK, Palacios F. Eur. J. Med. Chem. 2018; 149: 225
    • 9a Tokunaga M, Eckert M, Wakatsuki Y. Angew. Chem. Int. Ed. 1999; 38: 3222
    • 9b Korivi RP, Cheng C.-H. J. Org. Chem. 2006; 71: 7079
    • 9c Horn J, Marsden SP, Nelson A, House D, Weingarten GG. Org. Lett. 2008; 10: 4117
    • 9d Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
    • 9e Zhou W, Lei J. Chem. Commun. 2014; 50: 5583
    • 9f Trillo P, Pastor IM. Adv. Synth. Catal. 2016; 358: 2929
    • 9g Zheng W, Yang W, Luo D, Min L, Wang X, Hu Y. Adv. Synth. Catal. 2019; 361: 1995
    • 9h Kundal S, Chakraborty B, Paul K, Jana U. Org. Biomol. Chem. 2019; 17: 2321
    • 10a Johnson WS, Mathews FJ. J. Am. Chem. Soc. 1944; 66: 210
    • 10b Born JL. J. Org. Chem. 1972; 37: 3952
    • 11a Martínez R, Ramón DJ, Yus M. Eur. J. Org. Chem. 2007; 1599
    • 11b Martínez R, Ramón DJ, Yus M. J. Org. Chem. 2008; 73: 9778
    • 11c Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras MD. C, Soriano E. Chem. Rev. 2009; 109: 2652
    • 11d Anand N, Koley S, Ramulu BJ, Singh MS. Org. Biomol. Chem. 2015; 13: 9570
    • 11e Das K, Mondal A, Srimani D. Chem. Commun. 2018; 54: 10582
    • 11f Das S, Maiti D, De Sarkar S. J. Org. Chem. 2018; 83: 2309
    • 12a Cao K, Zhang F.-M, Tu Y.-Q, Zhuo X.-T, Fan C.-A. Chem. Eur. J. 2009; 15: 6332
    • 12b Kulkarni A, Török B. Green Chem. 2010; 12: 875
    • 12c Rotzoll S, Willy B, Schönhaber J, Rominger F, Müller TJ. J. Eur. J. Org. Chem. 2010; 3516
    • 12d Zhang X, Liu B, Shu X, Gao Y, Lv H, Zhu J. J. Org. Chem. 2012; 77: 501
    • 12e Meyet CE, Larsen CH. J. Org. Chem. 2014; 79: 9835
    • 12f Deshidi R, Devari S, Shah BA. Org. Chem. Front. 2015; 2: 515
    • 12g Jiang K.-M, Kang J.-A, Jin Y, Lin J. Org. Chem. Front. 2018; 5: 434
    • 13a Liu P, Wang Z, Lin J, Hu X. Eur. J. Org. Chem. 2012; 1583
    • 13b Su Y, Lu M, Dong B, Chen H, Shi X. Adv. Synth. Catal. 2014; 356: 692
    • 13c Liu J, Liu F, Zhu Y, Ma X, Jia X. Org. Lett. 2015; 17: 1409
    • 13d Gao X.-T, Gan C.-C, Liu S.-Y, Zhou F, Wu H.-H, Zhou J. ACS Catal. 2017; 7: 8588
    • 13e Ahmed W, Zhang S, Yu X, Yamamoto Y, Bao M. Green Chem. 2018; 20: 261
    • 13f Wang C, Yang J, Meng X, Sun Y, Man X, Li J, Sun F. Dalton Trans. 2019; 4474
    • 14a Gabriele B, Mancuso R, Salerno G, Ruffolo G, Plastina P. J. Org. Chem. 2007; 72: 6873
    • 14b Ali S, Zhu H.-T, Xia X.-F, Ji K.-G, Yang Y.-F, Song X.-R, Liang Y.-M. Org. Lett. 2011; 13: 2598
    • 14c Stein AL, Rosário AR, Zeni G. Eur. J. Org. Chem. 2015; 5640
    • 14d Reddy AC. S, Anbarasan P. J. Catal. 2018; 363: 102
    • 14e Evoniuk CJ, Gomes GD. P, Hill SP, Fujita S, Hanson K, Alabugin IV. J. Am. Chem. Soc. 2017; 139: 16210
    • 14f Yaragorla S, Pareek A. Eur. J. Org. Chem. 2018; 1863
    • 14g Syroeshkin MA, Kuriakose F, Saverina EA, Timofeeva VA, Egorov MP, Alabugin IV. Angew. Chem. Int. Ed. 2019; 58: 5532
  • 15 Rehan M, Hazra G, Ghorai P. Org. Lett. 2015; 17: 1668
  • 16 Evoniuk CJ, Hill SP, Hanson K, Alabugin IV. Chem. Commun. 2016; 52: 7138
    • 17a Cheng DP, Wu LJ, Lv HW, Xu XL, Yan JZ. J. Org. Chem. 2017; 82: 1610
    • 17b Cheng DP, Chen TP, Xu XL, Yan JZ. Adv. Synth. Catal. 2018; 360: 901
    • 17c Cheng DP, Wang ML, Deng ZT, Yan XH, Xu XL, Yan JZ. Eur. J. Org. Chem. 2019; 4589
    • 17d Cheng DP, Deng ZT, Yan XH, Wang ML, Xu XL, Yan JZ. Adv. Synth. Catal. 2019; 361: 5025
    • 18a Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
    • 18b Morales-Rivera CA, Floreancig PE, Liu P. J. Am. Chem. Soc. 2017; 139: 17935
    • 18c Rehan M, Nallagonda R, Das BG, Meena T, Ghorai P. J. Org. Chem. 2017; 82: 3411
    • 18d Zhang R, Qin Y, Zhang L, Luo S. J. Org. Chem. 2019; 84: 2542
    • 18e Li B, Wendlandt AE, Stahl SS. Org. Lett. 2019; 21: 1176
    • 18f Jiang W, Wang YJ, Niu PF, Quan ZJ, Su YP, Huo CD. Org. Lett. 2018; 20: 4649
  • 19 Leardini R, Nanni D, Tundo A, Zanardi G, Ruggieri F. J. Org. Chem. 1992; 57: 1842
  • 20 Wang ZM, Mo HJ, Cheng DP, Bao WL. Org. Biomol. Chem. 2012; 10: 4249
  • 21 Fukuzumi S, Koumitsu S, Hironaka K, Tanaka T. J. Am. Chem. Soc. 1987; 109: 305
    • 22a Newman MS, Khanna VK. Org. Prep. Proced. Int. 1985; 17: 422
    • 22b Maddala S, Mallick S, Venkatakrishnan P. J. Org. Chem. 2017; 82: 8958
  • 23 Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
  • 24 Chen K, Chen H, Wong J, Yang J, Pullarkat SA. ChemCatChem 2013; 5: 3882
  • 25 Nishio T, Omote Y. J. Chem. Soc., Perkin Trans. 1 1983; 1773
  • 26 Ahmed W, Zhang S, Yu X, Yamamoto Y, Bao M. Green Chem. 2018; 20: 261