Synthesis, Table of Contents Synthesis 2020; 52(12): 1833-1840DOI: 10.1055/s-0039-1691740 paper © Georg Thieme Verlag Stuttgart · New York Synthesis of 2,4-Diarylquinoline Derivatives via Chloranil-Promoted Oxidative Annulation and One-Pot Reaction Dongping Cheng∗ a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China , Xianhang Yan a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China , Jing Shen a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China , Yueqi Pu a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China , Xiaoliang Xu∗ b College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China Email: chengdp@zjut.edu.cn , Jizhong Yan∗ a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract An oxidative annulation for the synthesis of 2,4-diarylquinolines from o-allylanilines is disclosed that uses recyclable reagent Chloranil as the oxidant. The corresponding products are obtained in moderate to excellent yields. Furthermore, a one-pot access to 2,4-diarylquinolines from easily available anilines and 1,3-diarylpropenes is described as a highly atom-efficient protocol that involves oxidative coupling, rearrangement, and oxidative annulation. Key words Key wordsoxidative annulation - one-pot reaction - chloranil - 2,4-diarylqunoline Full Text References References 1 Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC. J. Med. Chem. 2001; 44: 2374 2 Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245 3 Praveen C, DheenKumar P, Muralidharan D, Perumal PT. Bioorg. Med. Chem. Lett. 2010; 20: 7292 4 Mukherjee S, Pal M. Drug Discovery Today 2013; 18: 389 5a Andrews S, Burgess SJ, Skaalrud D, Kelly JX, Peyton DH. J. Med. Chem. 2010; 53: 916 5b Tejería A, Pérez-Pertejo Y, Reguera RM, Carbajo-Andrés R, Balaña-Fouce R, Alonso C, Martin-Encinas E, Selas A, Rubiales G, Palacios F. Eur. J. Med. Chem. 2019; 162: 18 5c Hu Y.-Q, Gao C, Zhang S, Xu L, Xu Z, Feng L.-S, Wu X, Zhao F. Eur. J. Med. Chem. 2017; 139: 22 6a Jenekhe SA, Lu L, Alam MM. Macromolecules 2001; 34: 7315 6b Zhang Y, Sigman MS. J. Am. Chem. Soc. 2007; 129: 3076 6c Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, Liu X. Chem. Soc. Rev. 2014; 43: 3259 7a Kouznetsov V, Mendez L, Gómez C. Curr. Org. Chem. 2005; 9: 141 7b Madapa S, Tusi Z, Batra S. Curr. Org. Chem. 2008; 12: 1116 7c Majumder A, Gupta R, Jain A. Green Chem. Lett. Rev. 2013; 6: 151 7d Khusnutdinov RI, Bayguzina AR, Dzhemilev UM. J. Organomet. Chem. 2014; 768: 75 7e Chelucci G, Porcheddu A. Chem. Rec. 2017; 17: 200 7f Batista VF, Pinto DC. G. A, Silva AM. S. ACS Sustainable Chem. Eng. 2016; 4: 4064 7g Nainwal LM, Tasneem S, Akhtar W, Verma G, Khan MF, Parvez S, Shaquiquzzaman M, Akhter M, Alam MM. Eur. J. Med. Chem. 2019; 164: 121 8a Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161 8b Liberto NA, Simões JB, de Paiva Silva S, da Silva CJ, Modolo LV, de Fátima Â, Silva LM, Derita M, Zacchino S, Zuñiga OM. P, Romanelli GP, Fernandes SA. Bioorg. Med. Chem. 2017; 25: 1153 8c Alonso C, Fuertes M, Martín-Encinas E, Selas A, Rubiales G, Tesauro C, Knudssen BK, Palacios F. Eur. J. Med. Chem. 2018; 149: 225 9a Tokunaga M, Eckert M, Wakatsuki Y. Angew. Chem. Int. Ed. 1999; 38: 3222 9b Korivi RP, Cheng C.-H. J. Org. Chem. 2006; 71: 7079 9c Horn J, Marsden SP, Nelson A, House D, Weingarten GG. Org. Lett. 2008; 10: 4117 9d Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323 9e Zhou W, Lei J. Chem. Commun. 2014; 50: 5583 9f Trillo P, Pastor IM. Adv. Synth. Catal. 2016; 358: 2929 9g Zheng W, Yang W, Luo D, Min L, Wang X, Hu Y. Adv. Synth. Catal. 2019; 361: 1995 9h Kundal S, Chakraborty B, Paul K, Jana U. Org. Biomol. Chem. 2019; 17: 2321 10a Johnson WS, Mathews FJ. J. Am. Chem. Soc. 1944; 66: 210 10b Born JL. J. Org. Chem. 1972; 37: 3952 11a Martínez R, Ramón DJ, Yus M. Eur. J. Org. Chem. 2007; 1599 11b Martínez R, Ramón DJ, Yus M. J. Org. Chem. 2008; 73: 9778 11c Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras MD. C, Soriano E. Chem. Rev. 2009; 109: 2652 11d Anand N, Koley S, Ramulu BJ, Singh MS. Org. Biomol. Chem. 2015; 13: 9570 11e Das K, Mondal A, Srimani D. Chem. Commun. 2018; 54: 10582 11f Das S, Maiti D, De Sarkar S. J. Org. Chem. 2018; 83: 2309 12a Cao K, Zhang F.-M, Tu Y.-Q, Zhuo X.-T, Fan C.-A. Chem. Eur. J. 2009; 15: 6332 12b Kulkarni A, Török B. Green Chem. 2010; 12: 875 12c Rotzoll S, Willy B, Schönhaber J, Rominger F, Müller TJ. J. Eur. J. Org. Chem. 2010; 3516 12d Zhang X, Liu B, Shu X, Gao Y, Lv H, Zhu J. J. Org. Chem. 2012; 77: 501 12e Meyet CE, Larsen CH. J. Org. Chem. 2014; 79: 9835 12f Deshidi R, Devari S, Shah BA. Org. Chem. Front. 2015; 2: 515 12g Jiang K.-M, Kang J.-A, Jin Y, Lin J. Org. Chem. Front. 2018; 5: 434 13a Liu P, Wang Z, Lin J, Hu X. Eur. J. Org. Chem. 2012; 1583 13b Su Y, Lu M, Dong B, Chen H, Shi X. Adv. Synth. Catal. 2014; 356: 692 13c Liu J, Liu F, Zhu Y, Ma X, Jia X. Org. Lett. 2015; 17: 1409 13d Gao X.-T, Gan C.-C, Liu S.-Y, Zhou F, Wu H.-H, Zhou J. ACS Catal. 2017; 7: 8588 13e Ahmed W, Zhang S, Yu X, Yamamoto Y, Bao M. Green Chem. 2018; 20: 261 13f Wang C, Yang J, Meng X, Sun Y, Man X, Li J, Sun F. Dalton Trans. 2019; 4474 14a Gabriele B, Mancuso R, Salerno G, Ruffolo G, Plastina P. J. Org. Chem. 2007; 72: 6873 14b Ali S, Zhu H.-T, Xia X.-F, Ji K.-G, Yang Y.-F, Song X.-R, Liang Y.-M. Org. Lett. 2011; 13: 2598 14c Stein AL, Rosário AR, Zeni G. Eur. J. Org. Chem. 2015; 5640 14d Reddy AC. S, Anbarasan P. J. Catal. 2018; 363: 102 14e Evoniuk CJ, Gomes GD. P, Hill SP, Fujita S, Hanson K, Alabugin IV. J. Am. Chem. Soc. 2017; 139: 16210 14f Yaragorla S, Pareek A. Eur. J. Org. Chem. 2018; 1863 14g Syroeshkin MA, Kuriakose F, Saverina EA, Timofeeva VA, Egorov MP, Alabugin IV. Angew. Chem. Int. Ed. 2019; 58: 5532 15 Rehan M, Hazra G, Ghorai P. Org. Lett. 2015; 17: 1668 16 Evoniuk CJ, Hill SP, Hanson K, Alabugin IV. Chem. Commun. 2016; 52: 7138 17a Cheng DP, Wu LJ, Lv HW, Xu XL, Yan JZ. J. Org. Chem. 2017; 82: 1610 17b Cheng DP, Chen TP, Xu XL, Yan JZ. Adv. Synth. Catal. 2018; 360: 901 17c Cheng DP, Wang ML, Deng ZT, Yan XH, Xu XL, Yan JZ. Eur. J. Org. Chem. 2019; 4589 17d Cheng DP, Deng ZT, Yan XH, Wang ML, Xu XL, Yan JZ. Adv. Synth. Catal. 2019; 361: 5025 18a Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153 18b Morales-Rivera CA, Floreancig PE, Liu P. J. Am. Chem. Soc. 2017; 139: 17935 18c Rehan M, Nallagonda R, Das BG, Meena T, Ghorai P. J. Org. Chem. 2017; 82: 3411 18d Zhang R, Qin Y, Zhang L, Luo S. J. Org. Chem. 2019; 84: 2542 18e Li B, Wendlandt AE, Stahl SS. Org. Lett. 2019; 21: 1176 18f Jiang W, Wang YJ, Niu PF, Quan ZJ, Su YP, Huo CD. Org. Lett. 2018; 20: 4649 19 Leardini R, Nanni D, Tundo A, Zanardi G, Ruggieri F. J. Org. Chem. 1992; 57: 1842 20 Wang ZM, Mo HJ, Cheng DP, Bao WL. Org. Biomol. Chem. 2012; 10: 4249 21 Fukuzumi S, Koumitsu S, Hironaka K, Tanaka T. J. Am. Chem. Soc. 1987; 109: 305 22a Newman MS, Khanna VK. Org. Prep. Proced. Int. 1985; 17: 422 22b Maddala S, Mallick S, Venkatakrishnan P. J. Org. Chem. 2017; 82: 8958 23 Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638 24 Chen K, Chen H, Wong J, Yang J, Pullarkat SA. ChemCatChem 2013; 5: 3882 25 Nishio T, Omote Y. J. Chem. Soc., Perkin Trans. 1 1983; 1773 26 Ahmed W, Zhang S, Yu X, Yamamoto Y, Bao M. Green Chem. 2018; 20: 261 Supplementary Material Supplementary Material Supporting Information