Semin Neurol 2019; 39(05): 620-639
DOI: 10.1055/s-0039-1693006
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Inherited Neuropathies

Antonia S. Carroll
1   Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
2   Departments of Neurology, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
,
Joshua Burns
3   The Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
,
Garth Nicholson
4   Northcott Neuroscience Laboratory, ANZAC Research Institute, Molecular Medicine Laboratory, Concord Hospital, University of Sydney, Sydney, New South Wales, Australia
,
Matthew C. Kiernan
1   Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
5   Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia
,
Steve Vucic
2   Departments of Neurology, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
› Institutsangaben
Funding This study was supported by research grants from the National Health Medical Research Council of Australia [Project grant numbers 510233, GIA 1726, 1024915, 1055778] and is gratefully acknowledged. This work was also supported by funding to Forefront, a collaborative research group dedicated to the study of frontotemporal dementia and motor neuron disease, from the National Health and Medical research Council of Australia Program Grant (#1037746). A.C. acknowledges the Brain Foundation of Australia for providing postgraduate support.
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
22. Oktober 2019 (online)

Abstract

The inherited neuropathies are a common and heterogeneous group of slowly progressive disorders affecting motor, sensory, and autonomic nerves. These hereditary conditions can be confined to the peripheral nervous system, termed the primary hereditary neuropathies, or can occur as part of a multisystem disease. Identification of systemic involvement is necessary to distinguish the primary and secondary hereditary neuropathies to prevent the misdiagnosis of potentially treatable entities. Recent genetic and technological advances have dramatically improved our understanding of the underlying pathophysiology of these inherited neuropathies and hence provide the correct milieu for the future development of disease-modifying therapies. This review provides clinical, neurophysiological, genetic, pathophysiological, and treatment insights into the primary inherited neuropathies, and those associated with multisystem diseases, including porphyria and mitochondrial disorders.

 
  • References

  • 1 Vinci P, Serrao M, Millul A. , et al. Quality of life in patients with Charcot-Marie-Tooth disease. Neurology 2005; 65 (06) 922-924
  • 2 Padua L, Shy ME, Aprile I. , et al. Correlation between clinical/neurophysiological findings and quality of life in Charcot-Marie-Tooth type 1A. J Peripher Nerv Syst 2008; 13 (01) 64-70
  • 3 Mathis S, Goizet C, Tazir M. , et al. Charcot-Marie-Tooth diseases: an update and some new proposals for the classification. J Med Genet 2015; 52 (10) 681-690
  • 4 Rossor AM, Carr AS, Devine H. , et al. Peripheral neuropathy in complex inherited diseases: an approach to diagnosis. J Neurol Neurosurg Psychiatry 2017; 88 (10) 846-863
  • 5 Goizet C, Boukhris A, Mundwiller E. , et al. Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10. Hum Mutat 2009; 30 (02) E376-E385
  • 6 Caramins M, Colebatch JG, Bainbridge MN. , et al. Exome sequencing identification of a GJB1 missense mutation in a kindred with X-linked spinocerebellar ataxia (SCA-X1). Hum Mol Genet 2013; 22 (21) 4329-4338
  • 7 Harding AE, Thomas PK. The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 1980; 103 (02) 259-280
  • 8 Braathen GJ, Sand JC, Lobato A, Høyer H, Russell MB. Genetic epidemiology of Charcot-Marie-Tooth in the general population. Eur J Neurol 2011; 18 (01) 39-48
  • 9 Skre H. Genetic and clinical aspects of Charcot-Marie-Tooth's disease. Clin Genet 1974; 6 (02) 98-118
  • 10 Fridman V, Reilly MM. Inherited neuropathies. Semin Neurol 2015; 35 (04) 407-423
  • 11 Saifee TA, Pareés I, Kassavetis P. , et al. Tremor in Charcot-Marie-Tooth disease: no evidence of cerebellar dysfunction. Clin Neurophysiol 2015; 126 (09) 1817-1824
  • 12 Roussy G, Levy G. Sept cas d'une maladie familiale particuliere. Troubles de la marche, pieds bots et areflexie tendineuse generalis e avec accesoirement legere maladresse des mains. Rev Neurol (Paris) 1926; 2: 427-450
  • 13 Rossor AM, Evans MR, Reilly MM. A practical approach to the genetic neuropathies. Pract Neurol 2015; 15 (03) 187-198
  • 14 Liu L, Zhang R. Intermediate Charcot-Marie-Tooth disease. Neurosci Bull 2014; 30 (06) 999-1009
  • 15 Saporta AS, Sottile SL, Miller LJ, Feely SM, Siskind CE, Shy ME. Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann Neurol 2011; 69 (01) 22-33
  • 16 Barisic N, Claeys KG, Sirotković-Skerlev M. , et al. Charcot-Marie-Tooth disease: a clinico-genetic confrontation. Ann Hum Genet 2008; 72 (Pt 3): 416-441
  • 17 Baets J, Deconinck T, De Vriendt E. , et al. Genetic spectrum of hereditary neuropathies with onset in the first year of life. Brain 2011; 134 (Pt 9): 2664-2676
  • 18 Dejerine JJ, Sottas J. Sur la névrite interstitielle hypertrophique et progressive de l'enfance; affection souvent familiale et à debut infantile caractérisée par une atrophie musculaire des extrémities avec troubles marqués de la sensibilité et ataxie des mouvements et relevant d'une névrite interstitielle hypertrophique a marche ascendante avec lésions médullaires consecutives. Comp Rend Soc Biol Paris 1893; 45: 63-96
  • 19 Plante-Bordeneuve V, Said G. Dejerine-Sottas disease and hereditary demyelinating polyneuropathy of infancy. Muscle Nerve 2002; 26 (05) 608-621
  • 20 Warner LE, Hilz MJ, Appel SH. , et al. Clinical phenotypes of different MPZ (P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron 1996; 17 (03) 451-460
  • 21 Funalot B, Topilko P, Arroyo MA. , et al. Homozygous deletion of an EGR2 enhancer in congenital amyelinating neuropathy. Ann Neurol 2012; 71 (05) 719-723
  • 22 Ouvrier RA, McLeod JG, Morgan GJ, Wise GA, Conchin TE. Hereditary motor and sensory neuropathy of neuronal type with onset in early childhood. J Neurol Sci 1981; 51 (02) 181-197
  • 23 Boizot A, Talmat-Amar Y, Morrogh D. , et al. The instability of the BTB-KELCH protein Gigaxonin causes giant axonal neuropathy and constitutes a new penetrant and specific diagnostic test. Acta Neuropathol Commun 2014; 2: 47
  • 24 Tazir M, Nouioua S, Magy L. , et al. Phenotypic variability in giant axonal neuropathy. Neuromuscul Disord 2009; 19 (04) 270-274
  • 25 Johnson-Kerner BL, Roth L, Greene JP, Wichterle H, Sproule DM. Giant axonal neuropathy: an updated perspective on its pathology and pathogenesis. Muscle Nerve 2014; 50 (04) 467-476
  • 26 Bomont P, Cavalier L, Blondeau F. , et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 2000; 26 (03) 370-374
  • 27 Brennan KM, Bai Y, Shy ME. Demyelinating CMT--what's known, what's new and what's in store?. Neurosci Lett 2015; 596: 14-26
  • 28 Juneja M, Burns J, Saporta MA, Timmerman V. Challenges in modelling the Charcot-Marie-Tooth neuropathies for therapy development. J Neurol Neurosurg Psychiatry 2019; 90 (01) 58-67
  • 29 Murphy SM, Laura M, Fawcett K. , et al. Charcot-Marie-Tooth disease: frequency of genetic subtypes and guidelines for genetic testing. J Neurol Neurosurg Psychiatry 2012; 83 (07) 706-710
  • 30 Fridman V, Bundy B, Reilly MM. , et al; Inherited Neuropathies Consortium. CMT subtypes and disease burden in patients enrolled in the Inherited Neuropathies Consortium natural history study: a cross-sectional analysis. J Neurol Neurosurg Psychiatry 2015; 86 (08) 873-878
  • 31 Shy ME, Jáni A, Krajewski K. , et al. Phenotypic clustering in MPZ mutations. Brain 2004; 127 (Pt 2): 371-384
  • 32 Raeymaekers P, Timmerman V, Nelis E. , et al; The HMSN Collaborative Research Group. Duplication in chromosome 17p11.2 in Charcot-Marie-Tooth neuropathy type 1a (CMT 1a). Neuromuscul Disord 1991; 1 (02) 93-97
  • 33 Reilly MM, Murphy SM, Laurá M. Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2011; 16 (01) 1-14
  • 34 Bassam BA. Charcot-Marie-Tooth disease variants-classification, clinical, and genetic features and rational diagnostic evaluation. J Clin Neuromuscul Dis 2014; 15 (03) 117-128
  • 35 Garbay B, Heape AM, Sargueil F, Cassagne C. Myelin synthesis in the peripheral nervous system. Prog Neurobiol 2000; 61 (03) 267-304
  • 36 Laurá M, Singh D, Ramdharry G. , et al; Inherited Neuropathies Consortium. Prevalence and orthopedic management of foot and ankle deformities in Charcot-Marie-Tooth disease. Muscle Nerve 2018; 57 (02) 255-259
  • 37 Pelayo-Negro AL, Carr AS, Laura M, Skorupinska M, Reilly MM. An observational study of asymmetry in CMT1A. J Neurol Neurosurg Psychiatry 2015; 86 (05) 589-590
  • 38 Ishigami N, Kondo M, Nakagawa M. Case of Charcot-Marie-Tooth disease type 1A with increased cerebrospinal fluid proteins and nerve root hypertrophy [in Japanese]. Rinsho Shinkeigaku 2008; 48 (06) 419-421
  • 39 Liao JP, Waclawik AJ. Nerve root hypertrophy in CMT type 1A. Neurology 2004; 62 (05) 783
  • 40 Webster HD, Schröder JM, Asbury AK, Adams RD. The role of Schwann cells in the formation of “onion bulbs” found in chronic neuropathies. J Neuropathol Exp Neurol 1967; 26 (02) 276-299
  • 41 Bamford NS, White KK, Robinett SA, Otto RK, Gospe Jr SM. Neuromuscular hip dysplasia in Charcot-Marie-Tooth disease type 1A. Dev Med Child Neurol 2009; 51 (05) 408-411
  • 42 Dematteis M, Pépin JL, Jeanmart M, Deschaux C, Labarre-Vila A, Lévy P. Charcot-Marie-Tooth disease and sleep apnoea syndrome: a family study. Lancet 2001; 357 (9252): 267-272
  • 43 Dziewas R, Waldmann N, Böntert M. , et al. Increased prevalence of obstructive sleep apnoea in patients with Charcot-Marie-Tooth disease: a case control study. J Neurol Neurosurg Psychiatry 2008; 79 (07) 829-831
  • 44 Russo M, Laurá M, Polke JM. , et al. Variable phenotypes are associated with PMP22 missense mutations. Neuromuscul Disord 2011; 21 (02) 106-114
  • 45 Chance PF, Alderson MK, Leppig KA. , et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 1993; 72 (01) 143-151
  • 46 Mouton P, Tardieu S, Gouider R. , et al. Spectrum of clinical and electrophysiologic features in HNPP patients with the 17p11.2 deletion. Neurology 1999; 52 (07) 1440-1446
  • 47 Chance PF. Inherited focal, episodic neuropathies: hereditary neuropathy with liability to pressure palsies and hereditary neuralgic amyotrophy. Neuromolecular Med 2006; 8 (1-2): 159-174
  • 48 Jerath NU, Shy ME. Hereditary motor and sensory neuropathies: understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta 2015; 1852 (04) 667-678
  • 49 Ikegami T, Ikeda H, Mitsui T, Hayasaka K, Ishii S. Novel mutation of the myelin Po gene in a pedigree with Charcot-Marie-Tooth disease type 1B. Am J Med Genet 1997; 71 (02) 246-248
  • 50 Filbin MT, Walsh FS, Trapp BD, Pizzey JA, Tennekoon GI. Role of myelin P0 protein as a homophilic adhesion molecule. Nature 1990; 344 (6269): 871-872
  • 51 Shy ME. Peripheral neuropathies caused by mutations in the myelin protein zero. J Neurol Sci 2006; 242 (1-2): 55-66
  • 52 Murphy SM, Laurá M, Blake J, Polke J, Bremner F, Reilly MM. Conduction block and tonic pupils in Charcot-Marie-Tooth disease caused by a myelin protein zero p.Ile112Thr mutation. Neuromuscul Disord 2011; 21 (03) 223-226
  • 53 Spiryda LB. Myelin protein zero and membrane adhesion. J Neurosci Res 1998; 54 (02) 137-146
  • 54 Züchner S, Vance JM. Molecular genetics of autosomal-dominant axonal Charcot-Marie-Tooth disease. Neuromolecular Med 2006; 8 (1-2): 63-74
  • 55 Calvo J, Funalot B, Ouvrier RA. , et al. Genotype-phenotype correlations in Charcot-Marie-Tooth disease type 2 caused by mitofusin 2 mutations. Arch Neurol 2009; 66 (12) 1511-1516
  • 56 Baloh RH, Schmidt RE, Pestronk A, Milbrandt J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 2007; 27 (02) 422-430
  • 57 Bombelli F, Stojkovic T, Dubourg O. , et al. Charcot-Marie-Tooth disease type 2A: from typical to rare phenotypic and genotypic features. JAMA Neurol 2014; 71 (08) 1036-1042
  • 58 Feely SM, Laura M, Siskind CE. , et al. MFN2 mutations cause severe phenotypes in most patients with CMT2A. Neurology 2011; 76 (20) 1690-1696
  • 59 Scherer SS, Deschênes SM, Xu YT, Grinspan JB, Fischbeck KH, Paul DL. Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 1995; 15 (12) 8281-8294
  • 60 Scherer SS, Kleopa KA. X-linked Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2012; 17 (Suppl. 03) 9-13
  • 61 Kleopa KA, Abrams CK, Scherer SS. How do mutations in GJB1 cause X-linked Charcot-Marie-Tooth disease?. Brain Res 2012; 1487: 198-205
  • 62 Sato K, Kubo S, Fujii H. , et al. Diffusion tensor imaging and magnetic resonance spectroscopy of transient cerebral white matter lesions in X-linked Charcot-Marie-Tooth disease. J Neurol Sci 2012; 316 (1-2): 178-180
  • 63 Nicholson G, Corbett A. Slowing of central conduction in X-linked Charcot-Marie-Tooth neuropathy shown by brain stem auditory evoked responses. J Neurol Neurosurg Psychiatry 1996; 61 (01) 43-46
  • 64 Bergoffen J, Scherer SS, Wang S. , et al. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 1993; 262 (5142): 2039-2042
  • 65 Scheffers G, Hiller C, Refshauge K, Burns J. Prescription of foot and ankle orthoses for children with Charcot-Marie-Tooth disease: a review of the evidence. Phys Ther Rev 2012; 17 (02) 79-90
  • 66 Chetlin RD, Gutmann L, Tarnopolsky M, Ullrich IH, Yeater RA. Resistance training effectiveness in patients with Charcot-Marie-Tooth disease: recommendations for exercise prescription. Arch Phys Med Rehabil 2004; 85 (08) 1217-1223
  • 67 Burns J, Sman AD, Cornett KMD. , et al; FAST Study Group. Safety and efficacy of progressive resistance exercise for Charcot-Marie-Tooth disease in children: a randomised, double-blind, sham-controlled trial. Lancet Child Adolesc Health 2017; 1 (02) 106-113
  • 68 Lazar CC, Auquit-Auckbur I, Milliez PY. Hereditary neuropathy with liability to pressure palsies (HNPP) in hand surgery: reminds and warn against a usually unrecognised disease [in French]. Ann Chir Plast Esthet 2007; 52 (06) 606-608
  • 69 Walker JL, Nelson KR, Stevens DB, Lubicky JP, Ogden JA, VandenBrink KD. Spinal deformity in Charcot-Marie-Tooth disease. Spine 1994; 19 (09) 1044-1047
  • 70 Walker JL, Nelson KR, Heavilon JA. , et al. Hip abnormalities in children with Charcot-Marie-Tooth disease. J Pediatr Orthop 1994; 14 (01) 54-59
  • 71 Yagerman SE, Cross MB, Green DW, Scher DM. Pediatric orthopedic conditions in Charcot-Marie-Tooth disease: a literature review. Curr Opin Pediatr 2012; 24 (01) 50-56
  • 72 Reilly MM, Pareyson D, Burns J, Laurá M, Shy ME, Singh D. ; ENMC CMT Foot Surgery Study Group. 221st ENMC International Workshop: foot surgery in Charcot-Marie-Tooth disease. 10-12 June 2016, Naarden, The Netherlands. Neuromuscul Disord 2017; 27 (12) 1138-1142
  • 73 Pareyson D, Reilly MM, Schenone A. , et al. CMT-TRIAAL; CMTTRAUK groups. Ascorbic acid in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): a double-blind randomized trial. Lancet Neurol 2011; 10 (04) 320-328
  • 74 Sadjadi R, Reilly MM, Shy ME. , et al. Psychometrics evaluation of Charcot-Marie-Tooth Neuropathy Score (CMTNSv2) second version, using Rasch analysis. J Peripher Nerv Syst 2014; 19 (03) 192-196
  • 75 Eichinger K, Burns J, Cornett K. , et al. The Charcot-Marie-Tooth functional outcome measure (CMT-FOM). Neurology 2018; 91 (15) e1381-e1384
  • 76 Mandarakas MR, Menezes MP, Rose KJ. , et al. Development and validation of the Charcot-Marie-Tooth Disease Infant Scale. Brain 2018; 141 (12) 3319-3330
  • 77 Burns J, Ouvrier R, Estilow T. , et al. Validation of the Charcot-Marie-Tooth disease pediatric scale as an outcome measure of disability. Ann Neurol 2012; 71 (05) 642-652
  • 78 Sandelius Å, Zetterberg H, Blennow K. , et al. Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology 2018; 90 (06) e518-e524
  • 79 Morrow JM, Sinclair CD, Fischmann A. , et al. MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 2016; 15 (01) 65-77
  • 80 Hanemann CO, Stoll G, D'Urso D. , et al. Peripheral myelin protein-22 expression in Charcot-Marie-Tooth disease type 1a sural nerve biopsies. J Neurosci Res 1994; 37 (05) 654-659
  • 81 Passage E, Norreel JC, Noack-Fraissignes P. , et al. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med 2004; 10 (04) 396-401
  • 82 Meyer zu Horste G, Prukop T, Liebetanz D, Mobius W, Nave KA, Sereda MW. Antiprogesterone therapy uncouples axonal loss from demyelination in a transgenic rat model of CMT1A neuropathy. Ann Neurol 2007; 61 (01) 61-72
  • 83 Sereda MW, Meyer zu Hörste G, Suter U, Uzma N, Nave KA. Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat Med 2003; 9 (12) 1533-1537
  • 84 Gess B, Baets J, De Jonghe P, Reilly MM, Pareyson D, Young P. Ascorbic acid for the treatment of Charcot-Marie-Tooth disease. Cochrane Database Syst Rev 2015; 12 (12) CD011952 . Doi: 10.1002/14651858.CD011952
  • 85 Sahenk Z, Nagaraja HN, McCracken BS. , et al. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology 2005; 65 (05) 681-689
  • 86 Attarian S, Vallat JM, Magy L. , et al. An exploratory randomised double-blind and placebo-controlled phase 2 study of a combination of baclofen, naltrexone and sorbitol (PXT3003) in patients with Charcot-Marie-Tooth disease type 1A. Orphanet J Rare Dis 2014; 9: 199
  • 87 Accesswire. Pharnext Announces Positive Topline Results from Pivotal Phase 3 Trial of PXT3003 for Treatment of Charcot-Marie-Tooth Type 1A Disease. Available at: https://www.accesswire.com/525393/Pharnext-Announces-Positive-Topline-Results-from-Pivotal-Phase-3-Trial-of-PXT3003-for-Treatment-of-Charcot-Marie-Tooth-Type-1A-Disease. Accessed December 6, 2018
  • 88 Fledrich R, Stassart RM, Klink A. , et al. Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat Med 2014; 20 (09) 1055-1061
  • 89 Martini R. Neuregulin-1 alleviates Charcot-Marie-Tooth disease in rats. Nat Med 2014; 20 (09) 984-985
  • 90 Klein D, Patzkó Á, Schreiber D. , et al. Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot-Marie-Tooth disease in mice. Brain 2015; 138 (Pt 11): 3193-3205
  • 91 Shy ME. Therapeutic strategies for the inherited neuropathies. Neuromolecular Med 2006; 8 (1-2): 255-278
  • 92 Colby J, Nicholson R, Dickson KM. , et al. PMP22 carrying the trembler or trembler-J mutation is intracellularly retained in myelinating Schwann cells. Neurobiol Dis 2000; 7 (6 Pt B): 561-573
  • 93 Yum SW, Kleopa KA, Shumas S, Scherer SS. Diverse trafficking abnormalities of connexin32 mutants causing CMTX. Neurobiol Dis 2002; 11 (01) 43-52
  • 94 Egan ME, Pearson M, Weiner SA. , et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004; 304 (5670): 600-602
  • 95 Khajavi M, Inoue K, Wiszniewski W, Ohyama T, Snipes GJ, Lupski JR. Curcumin treatment abrogates endoplasmic reticulum retention and aggregation-induced apoptosis associated with neuropathy-causing myelin protein zero-truncating mutants. Am J Hum Genet 2005; 77 (05) 841-850
  • 96 Patzkó A, Bai Y, Saporta MA. , et al. Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain 2012; 135 (Pt 12): 3551-3566
  • 97 Rocha AG, Franco A, Krezel AM. , et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science 2018; 360 (6386): 336-341
  • 98 Detmer SA, Chan DC. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol 2007; 176 (04) 405-414
  • 99 d'Ydewalle C, Krishnan J, Chiheb DM. , et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 2011; 17 (08) 968-974
  • 100 Zhao HT, Damle S, Ikeda-Lee K. , et al. PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. J Clin Invest 2018; 128 (01) 359-368
  • 101 Houlden H, Blake J, Reilly MM. Hereditary sensory neuropathies. Curr Opin Neurol 2004; 17 (05) 569-577
  • 102 Dyck P, Chance P, Lebo R, Carney J. Hereditary motor and sensory neuropathies. In: Dyck PJ, Griffin JW, Low P, Poduslo JF. , eds. Peripheral Neuropathy. 3rd ed. Philadelphia: W.B. Saunders; 1993: 1094-1136
  • 103 Houlden H, King R, Blake J. , et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 2006; 129 (Pt 2): 411-425
  • 104 Rotthier A, Baets J, De Vriendt E. , et al. Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 2009; 132 (Pt 10): 2699-2711
  • 105 Rotthier A, Penno A, Rautenstrauss B. , et al. Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I. Hum Mutat 2011; 32 (06) E2211-E2225
  • 106 Penno A, Reilly MM, Houlden H. , et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 2010; 285 (15) 11178-11187
  • 107 Denny-Brown D. Hereditary sensory radicular neuropathy. J Neurol Neurosurg Psychiatry 1951; 14 (04) 237-252
  • 108 Fridman V, Oaklander AL, David WS. , et al. Natural history and biomarkers in hereditary sensory neuropathy type 1. Muscle Nerve 2015; 51 (04) 489-495
  • 109 Rosemberg S, Marie SK, Kliemann S. Congenital insensitivity to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV). Pediatr Neurol 1994; 11 (01) 50-56
  • 110 Axelrod FB. Familial dysautonomia: a review of the current pharmacological treatments. Expert Opin Pharmacother 2005; 6 (04) 561-567
  • 111 Norcliffe-Kaufmann L, Martinez J, Axelrod F, Kaufmann H. Hyperdopaminergic crises in familial dysautonomia: a randomized trial of carbidopa. Neurology 2013; 80 (17) 1611-1617
  • 112 Garofalo K, Penno A, Schmidt BP. , et al. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J Clin Invest 2011; 121 (12) 4735-4745
  • 113 Fridman V, Novak P, David W. , et al. A randomized, double-blind, placebo-controlled, delayed-start trial to evaluate the safety and efficacy of L-serine in subjects with hereditary sensory and autonomic neuropathy type 1 (HSAN1) (S45. 001). Neurology 2017; 88 (16 Suppl): S45-S001
  • 114 Lerner BH. When diseases disappear--the case of familial dysautonomia. N Engl J Med 2009; 361 (17) 1622-1625
  • 115 Bansagi B, Griffin H, Whittaker RG. , et al. Genetic heterogeneity of motor neuropathies. Neurology 2017; 88 (13) 1226-1234
  • 116 Rossor AM, Kalmar B, Greensmith L, Reilly MM. The distal hereditary motor neuropathies. J Neurol Neurosurg Psychiatry 2012; 83 (01) 6-14
  • 117 Dierick I, Baets J, Irobi J. , et al. Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype-phenotype correlation study. Brain 2008; 131 (Pt 5): 1217-1227
  • 118 Udd B. Molecular biology of distal muscular dystrophies--sarcomeric proteins on top. Biochim Biophys Acta 2007; 1772 (02) 145-158
  • 119 Kuhlenbäumer G, Hannibal MC, Nelis E. , et al. Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat Genet 2005; 37 (10) 1044-1046
  • 120 Mostowy S, Cossart P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 2012; 13 (03) 183-194
  • 121 Surka MC, Tsang CW, Trimble WS. The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 2002; 13 (10) 3532-3545
  • 122 Nagata K, Kawajiri A, Matsui S. , et al. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem 2003; 278 (20) 18538-18543
  • 123 Windebank AJ, Schenone A, Dewald GW. Hereditary neuropathy with liability to pressure palsies and inherited brachial plexus neuropathy--two genetically distinct disorders. Mayo Clin Proc 1995; 70 (08) 743-746
  • 124 Klein CJ, Windebank AJ. Hereditary brachial plexus neuropathy. In: Dyck PJ, Thomas PK. , eds. Peripheral Neuropathy. 4th ed. Philadelphia, PA: W.B. Saunders; 2005
  • 125 van Alfen N, van Engelen BG. The clinical spectrum of neuralgic amyotrophy in 246 cases. Brain 2006; 129 (Pt 2): 438-450
  • 126 van Alfen N, van Engelen BG, Reinders JW, Kremer H, Gabreëls FJ. The natural history of hereditary neuralgic amyotrophy in the Dutch population: two distinct types?. Brain 2000; 123 (Pt 4): 718-723
  • 127 Dunn HG, Daube JR, Gomez MR. Heredofamilial branchial plexus neuropathy (hereditary neuralgic amyotrophy with branchial predilection) in childhood. Dev Med Child Neurol 1978; 20 (01) 28-46
  • 128 Jacob JC, Andermann F, Robb JP. Heredofamilial neuritis with brachial predilection. Neurology 1961; 11 (12) 1025-1033
  • 129 Gardner JH, Maloney W. Hereditary brachial and cranial neuritis genetically linked with ocular hypotelorism and syndactyly. Neurology 1968; 18 (03) 278
  • 130 Airaksinen EM, Iivanainen M, Karli P, Sainio K, Haltia M. Hereditary recurrent brachial plexus neuropathy with dysmorphic features. Acta Neurol Scand 1985; 71 (04) 309-316
  • 131 Jeannet PY, Watts GD, Bird TD, Chance PF. Craniofacial and cutaneous findings expand the phenotype of hereditary neuralgic amyotrophy. Neurology 2001; 57 (11) 1963-1968
  • 132 Tsairis P, Dyck PJ, Mulder DW. Natural history of brachial plexus neuropathy. Report on 99 patients. Arch Neurol 1972; 27 (02) 109-117
  • 133 Klein CJ, Barbara DW, Sprung J, Dyck PJ, Weingarten TN. Surgical and postpartum hereditary brachial plexus attacks and prophylactic immunotherapy. Muscle Nerve 2013; 47 (01) 23-27
  • 134 Brown GK, Squier MV. Neuropathology and pathogenesis of mitochondrial diseases. J Inherit Metab Dis 1996; 19 (04) 553-572
  • 135 El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 2015; 116 (1-2): 4-12
  • 136 Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes: a distinctive clinical syndrome. Ann Neurol 1984; 16 (04) 481-488
  • 137 Rusanen H, Majamaa K, Tolonen U, Remes AM, Myllylä R, Hassinen IE. Demyelinating polyneuropathy in a patient with the tRNA(Leu)(UUR) mutation at base pair 3243 of the mitochondrial DNA. Neurology 1995; 45 (06) 1188-1192
  • 138 Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 1990; 61 (06) 931-937
  • 139 Fukuhara N, Tokiguchi S, Shirakawa K, Tsubaki T. Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities ): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J Neurol Sci 1980; 47 (01) 117-133
  • 140 Altmann J, Büchner B, Nadaj-Pakleza A. , et al. Expanded phenotypic spectrum of the m.8344A>G “MERRF” mutation: data from the German mitoNET registry. J Neurol 2016; 263 (05) 961-972
  • 141 Chu CC, Huang CC, Fang W, Chu NS, Pang CY, Wei YH. Peripheral neuropathy in mitochondrial encephalomyopathies. Eur Neurol 1997; 37 (02) 110-115
  • 142 Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990; 46 (03) 428-433
  • 143 Gelfand JM, Duncan JL, Racine CA. , et al. Heterogeneous patterns of tissue injury in NARP syndrome. J Neurol 2011; 258 (03) 440-448
  • 144 Tatuch Y, Christodoulou J, Feigenbaum A. , et al. Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 1992; 50 (04) 852-858
  • 145 Leigh D. Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 1951; 14 (03) 216-221
  • 146 Jacobs JM, Harding BN, Lake BD, Payan J, Wilson J. Peripheral neuropathy in Leigh's disease. Brain 1990; 113 (Pt 2): 447-462
  • 147 Goebel HH, Bardosi A, Friede RL, Kohlschütter A, Albani M, Siemes H. Sural nerve biopsy studies in Leigh's subacute necrotizing encephalomyelopathy. Muscle Nerve 1986; 9 (02) 165-173
  • 148 Sofou K, De Coo IF, Isohanni P. , et al. A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet J Rare Dis 2014; 9 (01) 52
  • 149 Chalmers RM, Lamont PJ, Nelson I. , et al. A mitochondrial DNA tRNA(Val) point mutation associated with adult-onset Leigh syndrome. Neurology 1997; 49 (02) 589-592
  • 150 Kalimo H, Lundberg PO, Olsson Y. Familial subacute necrotizing encephalomyelopathy of the adult form (adult Leigh syndrome). Ann Neurol 1979; 6 (03) 200-206
  • 151 Angelini C, Bello L, Spinazzi M, Ferrati C. Mitochondrial disorders of the nuclear genome. Acta Myol 2009; 28 (01) 16-23
  • 152 Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 1999; 283 (5402): 689-692
  • 153 Hirano M, Silvestri G, Blake DM. , et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology 1994; 44 (04) 721-727
  • 154 Hakonen AH, Goffart S, Marjavaara S. , et al. Infantile-onset spinocerebellar ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion. Hum Mol Genet 2008; 17 (23) 3822-3835
  • 155 Holve S, Hu D, Shub M, Tyson RW, Sokol RJ. Liver disease in Navajo neuropathy. J Pediatr 1999; 135 (04) 482-493
  • 156 Karadimas CL, Vu TH, Holve SA. , et al. Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am J Hum Genet 2006; 79 (03) 544-548
  • 157 Anderson KE, Sassa S, Bishop DF. , et al. Disorders of heme biosynthesis: X-linked sideroblastic anemia and the porphyrias. In: Scriver CR, Beaudet A, Sly WS. , et al., eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001: 2991-3062
  • 158 Hrdinka M, Puy H, Martasek P. May 2006 update in porphobilinogen deaminase gene polymorphisms and mutations causing acute intermittent porphyria: comparison with the situation in Slavic population. Physiol Res 2006; 55 (Suppl. 02) S119-S136
  • 159 Sassa S. The hematologic aspects of porphyria. In: Lichtman M, Beutler E, Kaushansky K. , et al., eds. Williams Hematology. 7th ed. Chicago: McGraw-Hill; 2006: 703-720
  • 160 Albers JW, Fink JK. Porphyric neuropathy. Muscle Nerve 2004; 30 (04) 410-422
  • 161 Kühnel A, Gross U, Doss MO. Hereditary coproporphyria in Germany: clinical-biochemical studies in 53 patients. Clin Biochem 2000; 33 (06) 465-473
  • 162 Brodie MJ, Thompson GG, Moore MR, Beattie AD, Goldberg A. Hereditary coproporphyria. Demonstration of the abnormalities in haem biosynthesis in peripheral blood. Q J Med 1977; 46 (182) 229-241
  • 163 Nordmann Y, Puy H, Da Silva V. , et al. Acute intermittent porphyria: prevalence of mutations in the porphobilinogen deaminase gene in blood donors in France. J Intern Med 1997; 242 (03) 213-217
  • 164 Badminton MN, Elder GH. Molecular mechanisms of dominant expression in porphyria. J Inherit Metab Dis 2005; 28 (03) 277-286
  • 165 Herrick AL, McColl KE. Acute intermittent porphyria. Best Pract Res Clin Gastroenterol 2005; 19 (02) 235-249
  • 166 Porphyrias KR. Lancet 2005; 365: 241-252
  • 167 Tracy JA, Dyck PJ. Porphyria and its neurologic manifestations. Handb Clin Neurol 2014; 120: 839-849
  • 168 Barohn RJ, Sanchez JA, Anderson KE. Acute peripheral neuropathy due to hereditary coproporphyria. Muscle Nerve 1994; 17 (07) 793-799
  • 169 Herrick A, McColl KE, McLellan A, Moore MR, Brodie MJ, Goldberg A. Effect of haem arginate therapy on porphyrin metabolism and mixed function oxygenase activity in acute hepatic porphyria. Lancet 1987; 2 (8569): 1178-1179
  • 170 Kordac V, Kozáková M, Martásek P. Changes of myocardial functions in acute hepatic porphyrias. Role of heme arginate administration. Ann Med 1989; 21 (04) 273-276
  • 171 Lin CS, Lee MJ, Park SB, Kiernan MC. Purple pigments: the pathophysiology of acute porphyric neuropathy. Clin Neurophysiol 2011; 122 (12) 2336-2344
  • 172 Lin CS, Krishnan AV, Lee MJ. , et al. Nerve function and dysfunction in acute intermittent porphyria. Brain 2008; 131 (Pt 9): 2510-2519
  • 173 Di Trapani G, Casali C, Tonali P, Topi GC. Peripheral nerve findings in hereditary coproporphyria. Light and ultrastructural studies in two sural nerve biopsies. Acta Neuropathol 1984; 63 (02) 96-107
  • 174 Kauppinen R, von und zu Fraunberg M. Molecular and biochemical studies of acute intermittent porphyria in 196 patients and their families. Clin Chem 2002; 48 (11) 1891-1900
  • 175 Whatley SD, Badminton MN. Role of genetic testing in the management of patients with inherited porphyria and their families. Ann Clin Biochem 2013; 50 (Pt 3): 204-216
  • 176 Anderson KE, Collins S. Open-label study of hemin for acute porphyria: clinical practice implications. Am J Med 2006; 119 (09) 801.e19-801.e24
  • 177 Pischik E, Kauppinen R. An update of clinical management of acute intermittent porphyria. Appl Clin Genet 2015; 8: 201-214
  • 178 Whatley SD, Badminton MN. Acute Intermittent Porphyria. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993. –2018. 2005 Sep 27 [Updated 2013 Feb 7]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1193/ . Accessed May 9, 2019
  • 179 Soonawalla ZF, Orug T, Badminton MN. , et al. Liver transplantation as a cure for acute intermittent porphyria. Lancet 2004; 363 (9410): 705-706
  • 180 Seth AK, Badminton MN, Mirza D, Russell S, Elias E. Liver transplantation for porphyria: who, when, and how?. Liver Transpl 2007; 13 (09) 1219-1227