Semin intervent Radiol 2019; 36(03): 163-175
DOI: 10.1055/s-0039-1693981
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Lung Ablation: Indications and Techniques

Bashir Akhavan Tafti
1   Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
,
Scott Genshaft
2   Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
,
Robert Suh
1   Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
2   Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
,
Fereidoun Abtin
1   Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
2   Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. August 2019 (online)

Abstract

Lung ablation is ever more recognized since its initial report and use almost two decades ago. With technological advancements in thermal modalities, particularly microwave ablation and cryoablation, better identification of the cohort of patients who best benefit from ablation, and understanding the role of imaging after ablation, image-guided thermal ablation for primary and secondary pulmonary malignancies is increasingly recognized and accepted as a cogent form of local therapy.

 
  • References

  • 1 Dupuy DE, Zagoria RJ, Akerley W, Mayo-Smith WW, Kavanagh PV, Safran H. Percutaneous radiofrequency ablation of malignancies in the lung. AJR Am J Roentgenol 2000; 174 (01) 57-59
  • 2 Rosenberg C, Puls R, Hegenscheid K. , et al. Laser ablation of metastatic lesions of the lung: long-term outcome. AJR Am J Roentgenol 2009; 192 (03) 785-792
  • 3 Usman M, Moore W, Talati R, Watkins K, Bilfinger TV. Irreversible electroporation of lung neoplasm: a case series. Med Sci Monit 2012; 18 (06) CS43-CS47
  • 4 Ricke J, Jürgens JH, Deschamps F. , et al. Irreversible electroporation (IRE) fails to demonstrate efficacy in a prospective multicenter phase II trial on lung malignancies: the ALICE trial. Cardiovasc Intervent Radiol 2015; 38 (02) 401-408
  • 5 Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee Jr FT. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 2005; 236 (01) 132-139
  • 6 Hong K, Georgiades C. Radiofrequency ablation: mechanism of action and devices. J Vasc Interv Radiol 2010; 21 (8, Suppl): S179-S186
  • 7 Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?. Curr Probl Diagn Radiol 2009; 38 (03) 135-143
  • 8 Sun Y, Wang Y, Ni X. , et al. Comparison of ablation zone between 915- and 2,450-MHz cooled-shaft microwave antenna: results in in vivo porcine livers. AJR Am J Roentgenol 2009; 192 (02) 511-514
  • 9 Lubner MG, Brace CL, Hinshaw JL, Lee Jr FT. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol 2010; 21 (8, Suppl): S192-S203
  • 10 Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee Jr FT, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation--what should you use and why?. Radiographics 2014; 34 (05) 1344-1362
  • 11 Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology 1998; 37 (03) 171-186
  • 12 Baust JG, Gage AA. Progress toward optimization of cryosurgery. Technol Cancer Res Treat 2004; 3 (02) 95-101
  • 13 Cooper IS. Cryobiology as viewed by the surgeon. Cryobiology 1964; 51: 44-51
  • 14 Li G, Xue M, Chen W, Yi S. Efficacy and safety of radiofrequency ablation for lung cancers: a systematic review and meta-analysis. Eur J Radiol 2018; 100: 92-98
  • 15 Dupuy DE, Fernando HC, Hillman S. , et al. Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer 2015; 121 (19) 3491-3498
  • 16 Palussière J, Chomy F, Savina M. , et al. Radiofrequency ablation of stage IA non-small cell lung cancer in patients ineligible for surgery: results of a prospective multicenter phase II trial. J Cardiothorac Surg 2018; 13 (01) 91
  • 17 Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143 (5, Suppl): e278S-e313S
  • 18 Kodama H, Yamakado K, Takaki H. , et al. Lung radiofrequency ablation for the treatment of unresectable recurrent non-small-cell lung cancer after surgical intervention. Cardiovasc Intervent Radiol 2012; 35 (03) 563-569
  • 19 Macchi M, Belfiore MP, Floridi C. , et al. Radiofrequency versus microwave ablation for treatment of the lung tumours: LUMIRA (lung microwave radiofrequency) randomized trial. Med Oncol 2017; 34 (05) 96
  • 20 Vogl TJ, Nour-Eldin NA, Albrecht MH. , et al. Thermal ablation of lung tumors: focus on microwave ablation. RoFo Fortschr Geb Rontgenstr Nuklearmed 2017; 189 (09) 828-843
  • 21 Tsakok MT, Jones D, MacNeill A, Gleeson FV. Is microwave ablation more effective than radiofrequency ablation in achieving local control for primary pulmonary malignancy?. Interact Cardiovasc Thorac Surg 2019; ivz044
  • 22 Moore W, Talati R, Bhattacharji P, Bilfinger T. Five-year survival after cryoablation of stage I non-small cell lung cancer in medically inoperable patients. J Vasc Interv Radiol 2015; 26 (03) 312-319
  • 23 McDevitt JL, Mouli SK, Nemcek AA, Lewandowski RJ, Salem R, Sato KT. Percutaneous cryoablation for the treatment of primary and metastatic lung tumors: identification of risk factors for recurrence and major complications. J Vasc Interv Radiol 2016; 27 (09) 1371-1379
  • 24 Lam A, Yoshida EJ, Bui K, Fernando D, Nelson K, Abi-Jaoudeh N. A national cancer database analysis of radiofrequency ablation versus stereotactic body radiotherapy in early-stage non-small cell lung cancer. J Vasc Interv Radiol 2018; 29 (09) 1211-1217.e1
  • 25 Chan MD, Dupuy DE, Mayo-Smith WW, Ng T, DiPetrillo TA. Combined radiofrequency ablation and high-dose rate brachytherapy for early-stage non-small-cell lung cancer. Brachytherapy 2011; 10 (03) 253-259
  • 26 Grieco CA, Simon CJ, Mayo-Smith WW, DiPetrillo TA, Ready NE, Dupuy DE. Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non-small-cell lung cancer. J Vasc Interv Radiol 2006; 17 (07) 1117-1124
  • 27 Kim SR, Han HJ, Park SJ. , et al. Comparison between surgery and radiofrequency ablation for stage I non-small cell lung cancer. Eur J Radiol 2012; 81 (02) 395-399
  • 28 Kwan SW, Mortell KE, Hippe DS, Brunner MC. An economic analysis of sublobar resection versus thermal ablation for early-stage non-small-cell lung cancer. J Vasc Interv Radiol 2014; 25 (10) 1558-1564 , quiz 1565
  • 29 Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg 2010; 211 (01) 68-72
  • 30 Lee H, Jin GY, Han YM. , et al. Comparison of survival rate in primary non-small-cell lung cancer among elderly patients treated with radiofrequency ablation, surgery, or chemotherapy. Cardiovasc Intervent Radiol 2012; 35 (02) 343-350
  • 31 Crabtree T, Puri V, Timmerman R. , et al. Treatment of stage I lung cancer in high-risk and inoperable patients: comparison of prospective clinical trials using stereotactic body radiotherapy (RTOG 0236), sublobar resection (ACOSOG Z4032), and radiofrequency ablation (ACOSOG Z4033). J Thorac Cardiovasc Surg 2013; 145 (03) 692-699
  • 32 Alexander ES, Machan JT, Ng T, Breen LD, DiPetrillo TA, Dupuy DE. Cost and effectiveness of radiofrequency ablation versus limited surgical resection for stage I non-small-cell lung cancer in elderly patients: is less more?. J Vasc Interv Radiol 2013; 24 (04) 476-482
  • 33 Mouli SK, Kurilova I, Sofocleous CT, Lewandowski RJ. The role of percutaneous image-guided thermal ablation for the treatment of pulmonary malignancies. AJR Am J Roentgenol 2017; 209 (04) 740-751
  • 34 Vogl TJ, Naguib NN, Gruber-Rouh T, Koitka K, Lehnert T, Nour-Eldin NE. Microwave ablation therapy: clinical utility in treatment of pulmonary metastases. Radiology 2011; 261 (02) 643-651
  • 35 de Baère T, Aupérin A, Deschamps F. , et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol 2015; 26 (05) 987-991
  • 36 Simon CJ, Dupuy DE, DiPetrillo TA. , et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology 2007; 243 (01) 268-275
  • 37 Yamakado K, Inoue Y, Takao M. , et al. Long-term results of radiofrequency ablation in colorectal lung metastases: single center experience. Oncol Rep 2009; 22 (04) 885-891
  • 38 Okuma T, Matsuoka T, Yamamoto A. , et al. Determinants of local progression after computed tomography-guided percutaneous radiofrequency ablation for unresectable lung tumors: 9-year experience in a single institution. Cardiovasc Intervent Radiol 2010; 33 (04) 787-793
  • 39 Chua TC, Sarkar A, Saxena A, Glenn D, Zhao J, Morris DL. Long-term outcome of image-guided percutaneous radiofrequency ablation of lung metastases: an open-labeled prospective trial of 148 patients. Ann Oncol 2010; 21 (10) 2017-2022
  • 40 de Baere T, Tselikas L, Woodrum D. , et al. Evaluating cryoablation of metastatic lung tumors in patients--safety and efficacy: the ECLIPSE trial--interim analysis at 1 year. J Thorac Oncol 2015; 10 (10) 1468-1474
  • 41 Aziz A, Ashizawa K, Nagaoki K, Hayashi K. High resolution CT anatomy of the pulmonary fissures. J Thorac Imaging 2004; 19 (03) 186-191
  • 42 Al-Hakim RA, Abtin FG, Genshaft SJ, Kutay E, Suh RD. Defining new metrics in microwave ablation of pulmonary tumors: ablation work and ablation resistance score. J Vasc Interv Radiol 2016; 27 (09) 1380-1386
  • 43 Nakatsuka S, Yashiro H, Inoue M. , et al. On freeze-thaw sequence of vital organ of assuming the cryoablation for malignant lung tumors by using cryoprobe as heat source. Cryobiology 2010; 61 (03) 317-326
  • 44 Hinshaw JL, Littrup PJ, Durick N. , et al. Optimizing the protocol for pulmonary cryoablation: a comparison of a dual- and triple-freeze protocol. Cardiovasc Intervent Radiol 2010; 33 (06) 1180-1185
  • 45 Pan PJ, Bansal AK, Genshaft SJ, Kim GH, Suh RD, Abtin F. Comparison of double-freeze versus modified triple-freeze pulmonary cryoablation and hemorrhage volume using different probe sizes in an in vivo porcine lung. J Vasc Interv Radiol 2018; 29 (05) 722-728
  • 46 Littrup PJ, Mody A, Sparschu R. , et al. Prostatic cryotherapy: ultrasonographic and pathologic correlation in the canine model. Urology 1994; 44 (02) 175-183 , discussion 183–184
  • 47 Abtin F, Quirk MT, Suh RD. , et al. Percutaneous cryoablation for the treatment of recurrent malignant pleural mesothelioma: safety, early-term efficacy, and predictors of local recurrence. J Vasc Interv Radiol 2017; 28 (02) 213-221
  • 48 Abtin F, Suh RD, Nasehi L. , et al. Percutaneous cryoablation for the treatment of recurrent thymoma: preliminary safety and efficacy. J Vasc Interv Radiol 2015; 26 (05) 709-714
  • 49 Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 2009; 58 (01) 1-11
  • 50 Wang H, Littrup PJ, Duan Y, Zhang Y, Feng H, Nie Z. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology 2005; 235 (01) 289-298
  • 51 Kawamura M, Izumi Y, Tsukada N. , et al. Percutaneous cryoablation of small pulmonary malignant tumors under computed tomographic guidance with local anesthesia for nonsurgical candidates. J Thorac Cardiovasc Surg 2006; 131 (05) 1007-1013
  • 52 Shi F, Li G, Zhou Z. , et al. Microwave ablation versus radiofrequency ablation for the treatment of pulmonary tumors. Oncotarget 2017; 8 (65) 109791-109798
  • 53 Vogl TJ, Eckert R, Naguib NN, Beeres M, Gruber-Rouh T, Nour-Eldin NA. Thermal ablation of colorectal lung metastases: retrospective comparison among laser-induced thermotherapy, radiofrequency ablation, and microwave ablation. AJR Am J Roentgenol 2016; 207 (06) 1340-1349
  • 54 Planché O, Teriitehau C, Boudabous S. , et al. In vivo evaluation of lung microwave ablation in a porcine tumor mimic model. Cardiovasc Intervent Radiol 2013; 36 (01) 221-228
  • 55 Skonieczki BD, Wells C, Wasser EJ, Dupuy DE. Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: is it safe?. Eur J Radiol 2011; 79 (03) 343-346
  • 56 Kashima M, Yamakado K, Takaki H. , et al. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: a single center's experiences. AJR Am J Roentgenol 2011; 197 (04) W576-80
  • 57 Chan VO, McDermott S, Malone DE, Dodd JD. Percutaneous radiofrequency ablation of lung tumors: evaluation of the literature using evidence-based techniques. J Thorac Imaging 2011; 26 (01) 18-26
  • 58 Zheng A, Wang X, Yang X. , et al. Major complications after lung microwave ablation: a single-center experience on 204 sessions. Ann Thorac Surg 2014; 98 (01) 243-248
  • 59 Zhu JC, Yan TD, Morris DL. A systematic review of radiofrequency ablation for lung tumors. Ann Surg Oncol 2008; 15 (06) 1765-1774
  • 60 Sakurai J, Hiraki T, Mukai T. , et al. Intractable pneumothorax due to bronchopleural fistula after radiofrequency ablation of lung tumors. J Vasc Interv Radiol 2007; 18 (1, Pt 1): 141-145
  • 61 Kodama H, Yamakado K, Murashima S. , et al. Intractable bronchopleural fistula caused by radiofrequency ablation: endoscopic bronchial occlusion with silicone embolic material. Br J Radiol 2009; 82 (983) e225-e227
  • 62 Powell DK, Baum S. Bronchopleural fistula treated with N-butyl cyanoacrylate glue after ablation. J Vasc Interv Radiol 2018; 29 (12) 1692-1693
  • 63 Okuma T, Matsuoka T, Yamamoto A. , et al. Frequency and risk factors of various complications after computed tomography-guided radiofrequency ablation of lung tumors. Cardiovasc Intervent Radiol 2008; 31 (01) 122-130
  • 64 Hiraki T, Tajiri N, Mimura H. , et al. Pneumothorax, pleural effusion, and chest tube placement after radiofrequency ablation of lung tumors: incidence and risk factors. Radiology 2006; 241 (01) 275-283
  • 65 Abtin FG, Eradat J, Gutierrez AJ, Lee C, Fishbein MC, Suh RD. Radiofrequency ablation of lung tumors: imaging features of the postablation zone. Radiographics 2012; 32 (04) 947-969