Semin intervent Radiol 2019; 36(04): 334-342
DOI: 10.1055/s-0039-1696704
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Postablation Immune Microenvironment: Synergy between Interventional Oncology and Immuno-oncology

DaeHee Kim
1   Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
,
Joseph P. Erinjeri
1   Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
› Institutsangaben
Source of Funding This article was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748.
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Oktober 2019 (online)

Abstract

Current tumor thermal ablation techniques rely on extreme temperatures to induce irreversible cellular injury and coagulative tissue necrosis. Ablation-induced cellular injury or death releases cancer neoantigens and activates the cancer-immunity cycle, potentially generating tumor-specific immune effectors. However, multiple negative regulatory modulators exist at each step of the cycle, mitigating meaningful and therapeutic anticancer effect provided by the immune system. Recent studies have focused on the introduction and testing of adjuvant immunotherapy combined with ablation to synergistically shift the equilibrium out of inhibitory immune modulation. This article reviews the immune microenvironment in relation to image-guided ablation techniques and discusses current and upcoming novel strategies to take advantage of antitumor immunity.

Disclosure Statement

The authors declare that they have no conflicts of interest.


 
  • References

  • 1 Mole RH. Whole body irradiation; radiobiology or medicine?. Br J Radiol 1953; 26 (305) 234-241
  • 2 Waitz R, Solomon SB. Can local radiofrequency ablation of tumors generate systemic immunity against metastatic disease?. Radiology 2009; 251 (01) 1-2
  • 3 Kim H, Park BK, Kim CK. Spontaneous regression of pulmonary and adrenal metastases following percutaneous radiofrequency ablation of a recurrent renal cell carcinoma. Korean J Radiol 2008; 9 (05) 470-472
  • 4 Rao P, Escudier B, de Baere T. Spontaneous regression of multiple pulmonary metastases after radiofrequency ablation of a single metastasis. Cardiovasc Intervent Radiol 2011; 34 (02) 424-430
  • 5 Sánchez-Ortiz RF, Tannir N, Ahrar K, Wood CG. Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor: an in situ tumor vaccine?. J Urol 2003; 170 (01) 178-179
  • 6 Soanes WA, Ablin RJ, Gonder MJ. Remission of metastatic lesions following cryosurgery in prostatic cancer: immunologic considerations. J Urol 1970; 104 (01) 154-159
  • 7 Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39 (01) 1-10
  • 8 Zerbini A, Pilli M, Penna A. , et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res 2006; 66 (02) 1139-1146
  • 9 Hansler J, Wissniowski TT, Schuppan D. , et al. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol 2006; 12 (23) 3716-3721
  • 10 Fehleisen F. Ueber die Züchtung der Erysipelkokken auf künstlichem Nährboden und ihre Uebertragbarkeit auf den Menschen. Dtsch Med Wochenschr 1882; 8 (31) 553-554
  • 11 Busch W. Aus der Sitzung der medicinischen Section vom 13 November 1867. Berlin Klin Wochenschr. 1868; 5: 137
  • 12 Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res 1991; (262) 3-11
  • 13 Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3 (11) 991-998
  • 14 Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331 (6024): 1565-1570
  • 15 Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 2014; 14 (03) 199-208
  • 16 Nikfarjam M, Muralidharan V, Christophi C. Mechanisms of focal heat destruction of liver tumors. J Surg Res 2005; 127 (02) 208-223
  • 17 Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258 (02) 351-369
  • 18 Velez E, Goldberg SN, Kumar G. , et al. Hepatic thermal ablation: effect of device and heating parameters on local tissue reactions and distant tumor growth. Radiology 2016; 281 (03) 782-792
  • 19 Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000; 12 (11) 1539-1546
  • 20 Sabel MS, Su G, Griffith KA, Chang AE. Rate of freeze alters the immunologic response after cryoablation of breast cancer. Ann Surg Oncol 2010; 17 (04) 1187-1193
  • 21 Erinjeri JP, Thomas CT, Samoilia A. , et al. Image-guided thermal ablation of tumors increases the plasma level of interleukin-6 and interleukin-10. J Vasc Interv Radiol 2013; 24 (08) 1105-1112
  • 22 Ahmed M, Kumar G, Moussa M. , et al. Hepatic radiofrequency ablation-induced stimulation of distant tumor growth is suppressed by c-Met inhibition. Radiology 2016; 279 (01) 103-117
  • 23 Kang TW, Lim HK, Lee MW. , et al. Aggressive intrasegmental recurrence of hepatocellular carcinoma after radiofrequency ablation: risk factors and clinical significance. Radiology 2015; 276 (01) 274-285
  • 24 Nikfarjam M, Muralidharan V, Christophi C. Altered growth patterns of colorectal liver metastases after thermal ablation. Surgery 2006; 139 (01) 73-81
  • 25 Kang TW, Kim JM, Rhim H. , et al. Small hepatocellular carcinoma: radiofrequency ablation versus nonanatomic resection--propensity score analyses of long-term outcomes. Radiology 2015; 275 (03) 908-919
  • 26 Lee DH, Lee JM, Lee JY, Kim SH, Han JK, Choi BI. Radiofrequency ablation for intrahepatic recurrent hepatocellular carcinoma: long-term results and prognostic factors in 168 patients with cirrhosis. Cardiovasc Intervent Radiol 2014; 37 (03) 705-715
  • 27 Rozenblum N, Zeira E, Scaiewicz V. , et al. Oncogenesis: an “off-target” effect of radiofrequency ablation. Radiology 2015; 276 (02) 426-432
  • 28 Facciorusso A, Del Prete V, Crucinio N, Serviddio G, Vendemiale G, Muscatiello N. Lymphocyte-to-monocyte ratio predicts survival after radiofrequency ablation for colorectal liver metastases. World J Gastroenterol 2016; 22 (16) 4211-4218
  • 29 Dan J, Zhang Y, Peng Z. , et al. Postoperative neutrophil-to-lymphocyte ratio change predicts survival of patients with small hepatocellular carcinoma undergoing radiofrequency ablation. PLoS One 2013; 8 (03) e58184
  • 30 Chang X, Zhang F, Liu T, Wang W, Guo H. Neutrophil-to-lymphocyte ratio as an independent predictor for survival in patients with localized clear cell renal cell carcinoma after radiofrequency ablation: a propensity score matching analysis. Int Urol Nephrol 2017; 49 (06) 967-974
  • 31 Zerbini A, Pilli M, Laccabue D. , et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 2010; 138 (05) 1931-1942
  • 32 Ahmad F, Gravante G, Bhardwaj N. , et al. Changes in interleukin-1β and 6 after hepatic microwave tissue ablation compared with radiofrequency, cryotherapy and surgical resections. Am J Surg 2010; 200 (04) 500-506
  • 33 Rozenblum N, Zeira E, Bulvik B. , et al. Radiofrequency ablation: inflammatory changes in the periablative zone can induce global organ effects, including liver regeneration. Radiology 2015; 276 (02) 416-425
  • 34 Evrard S, Menetrier-Caux C, Biota C. , et al. Cytokines pattern after surgical radiofrequency ablation of liver colorectal metastases. Gastroenterol Clin Biol 2007; 31 (02) 141-145
  • 35 Fietta AM, Morosini M, Passadore I. , et al. Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum Immunol 2009; 70 (07) 477-486
  • 36 Iwahashi S, Shimada M, Utsunomiya T. , et al. Epithelial-mesenchymal transition-related genes are linked to aggressive local recurrence of hepatocellular carcinoma after radiofrequency ablation. Cancer Lett 2016; 375 (01) 47-50
  • 37 Schell SR, Wessels FJ, Abouhamze A, Moldawer LL, Copeland III EM. Pro- and antiinflammatory cytokine production after radiofrequency ablation of unresectable hepatic tumors. J Am Coll Surg 2002; 195 (06) 774-781
  • 38 Schueller G, Kettenbach J, Sedivy R. , et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol 2004; 24 (03) 609-613
  • 39 Rai R, Richardson C, Flecknell P, Robertson H, Burt A, Manas DM. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res 2005; 129 (01) 147-151
  • 40 Yang WL, Nair DG, Makizumi R. , et al. Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation. Ann Surg Oncol 2004; 11 (04) 399-406
  • 41 Figueiredo C, Wittmann M, Wang D. , et al. Heat shock protein 70 (HSP70) induces cytotoxicity of T-helper cells. Blood 2009; 113 (13) 3008-3016
  • 42 Chen T, Guo J, Han C, Yang M, Cao X. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol 2009; 182 (03) 1449-1459
  • 43 den Brok MH, Sutmuller RP, Nierkens S. , et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 2006; 95 (07) 896-905
  • 44 Haen SP, Gouttefangeas C, Schmidt D. , et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones 2011; 16 (05) 495-504
  • 45 Nikfarjam M, Muralidharan V, Su K, Malcontenti-Wilson C, Christophi C. Patterns of heat shock protein (HSP70) expression and Kupffer cell activity following thermal ablation of liver and colorectal liver metastases. Int J Hyperthermia 2005; 21 (04) 319-332
  • 46 Kroeze SG, van Melick HH, Nijkamp MW. , et al. Incomplete thermal ablation stimulates proliferation of residual renal carcinoma cells in a translational murine model. BJU Int 2012; 110 (6, Pt B): E281-E286
  • 47 Hundt W, O'Connell-Rodwell CE, Bednarski MD, Steinbach S, Guccione S. In vitro effect of focused ultrasound or thermal stress on HSP70 expression and cell viability in three tumor cell lines. Acad Radiol 2007; 14 (07) 859-870
  • 48 Ahmad F, Gravante G, Bhardwaj N. , et al. Renal effects of microwave ablation compared with radiofrequency, cryotherapy and surgical resection at different volumes of the liver treated. Liver Int 2010; 30 (09) 1305-1314
  • 49 Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418 (6894): 191-195
  • 50 Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med 2008; 14 (7-8): 476-484
  • 51 Ravindranath MH, Wood TF, Soh D. , et al. Cryosurgical ablation of liver tumors in colon cancer patients increases the serum total ganglioside level and then selectively augments antiganglioside IgM. Cryobiology 2002; 45 (01) 10-21
  • 52 Jansen MC, van Hillegersberg R, Schoots IG. , et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery 2010; 147 (05) 686-695
  • 53 Seifert JK, Morris DL. World survey on the complications of hepatic and prostate cryotherapy. World J Surg 1999; 23 (02) 109-113 , discussion 113–114
  • 54 Washington K, Debelak JP, Gobbell C. , et al. Hepatic cryoablation-induced acute lung injury: histopathologic findings. J Surg Res 2001; 95 (01) 1-7
  • 55 Chapman WC, Debelak JP, Wright Pinson C. , et al. Hepatic cryoablation, but not radiofrequency ablation, results in lung inflammation. Ann Surg 2000; 231 (05) 752-761
  • 56 Seifert JK, France MP, Zhao J. , et al. Large volume hepatic freezing: association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model. World J Surg 2002; 26 (11) 1333-1341
  • 57 Ahmad F, Gravante G, Bhardwaj N. , et al. Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy. J Gastrointest Surg 2010; 14 (12) 1963-1968
  • 58 Mauri G, Nicosia L, Xu Z. , et al. Focused ultrasound: tumour ablation and its potential to enhance immunological therapy to cancer. Br J Radiol 2018; 91 (1083): 20170641
  • 59 Roberts WW, Hall TL, Ives K, Wolf Jr JS, Fowlkes JB, Cain CA. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol 2006; 175 (02) 734-738
  • 60 Copelan A, Hartman J, Chehab M, Venkatesan AM. High-intensity focused ultrasound: current status for image-guided therapy. Semin Intervent Radiol 2015; 32 (04) 398-415
  • 61 Lu P, Zhu XQ, Xu ZL, Zhou Q, Zhang J, Wu F. Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery 2009; 145 (03) 286-293
  • 62 Kallio R, Sequeiros R, Surcel HM, Ohtonen P, Kiviniemi H, Syrjälä H. Early cytokine responses after percutaneous magnetic resonance imaging guided laser thermoablation of malignant liver tumors. Cytokine 2006; 34 (5-6): 278-283
  • 63 Lin WX, Fifis T, Malcontenti-Wilson C. , et al. Induction of Th1 immune responses following laser ablation in a murine model of colorectal liver metastases. J Transl Med 2011; 9: 83
  • 64 Vogl TJ, Wissniowski TT, Naguib NN. , et al. Activation of tumor-specific T lymphocytes after laser-induced thermotherapy in patients with colorectal liver metastases. Cancer Immunol Immunother 2009; 58 (10) 1557-1563
  • 65 Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality--clinical implications. Technol Cancer Res Treat 2007; 6 (01) 37-48
  • 66 Li X, Xu K, Li W. , et al. Immunologic response to tumor ablation with irreversible electroporation. PLoS One 2012; 7 (11) e48749
  • 67 White SB, Zhang Z, Chen J, Gogineni VR, Larson AC. Early immunologic response of irreversible electroporation versus cryoablation in a rodent model of pancreatic cancer. J Vasc Interv Radiol 2018; 29 (12) 1764-1769
  • 68 Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET imaging of T cells. Trends Cancer 2018; 4 (05) 359-373
  • 69 Larimer BM, Wehrenberg-Klee E, Dubois F. , et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res 2017; 77 (09) 2318-2327
  • 70 Waitz R, Solomon SB, Petre EN. , et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res 2012; 72 (02) 430-439
  • 71 Shi L, Chen L, Wu C. , et al. PD-1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor. Clin Cancer Res 2016; 22 (05) 1173-1184
  • 72 McArthur HL, Diab A, Page DB. , et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res 2016; 22 (23) 5729-5737
  • 73 Duffy AG, Ulahannan SV, Makorova-Rusher O. , et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 2017; 66 (03) 545-551
  • 74 Bäcklund M, Freedman J. Microwave ablation and immune activation in the treatment of recurrent colorectal lung metastases: a case report. Case Rep Oncol 2017; 10 (01) 383-387
  • 75 Soule E, Bandyk M, Matteo J. Percutaneous ablative cryoimmunotherapy for micrometastatic abscopal effect: no complications. Cryobiology 2018; 82: 22-26
  • 76 Nakagawa H, Mizukoshi E, Iida N. , et al. In vivo immunological antitumor effect of OK-432-stimulated dendritic cell transfer after radiofrequency ablation. Cancer Immunol Immunother 2014; 63 (04) 347-356
  • 77 Machlenkin A, Goldberger O, Tirosh B. , et al. Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity. Clin Cancer Res 2005; 11 (13) 4955-4961
  • 78 Chavez M, Silvestrini MT, Ingham ES. , et al. Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics 2018; 8 (13) 3611-3628
  • 79 den Brok MH, Sutmuller RP, Nierkens S. , et al. Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer Res 2006; 66 (14) 7285-7292
  • 80 Redondo P, del Olmo J, López-Diaz de Cerio A. , et al. Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J Invest Dermatol 2007; 127 (07) 1673-1680
  • 81 Hamamoto S, Okuma T, Yamamoto A. , et al. Radiofrequency ablation and immunostimulant OK-432: combination therapy enhances systemic antitumor immunity for treatment of VX2 lung tumors in rabbits. Radiology 2013; 267 (02) 405-413
  • 82 Xu H, Wang Q, Lin C. , et al. Synergism between cryoablation and GM-CSF: enhanced immune function of splenic dendritic cells in mice with glioma. Neuroreport 2015; 26 (06) 346-353
  • 83 Urano M, Tanaka C, Sugiyama Y, Miya K, Saji S. Antitumor effects of residual tumor after cryoablation: the combined effect of residual tumor and a protein-bound polysaccharide on multiple liver metastases in a murine model. Cryobiology 2003; 46 (03) 238-245
  • 84 Hamamoto S, Okuma T, Yamamoto A. , et al. Combination radiofrequency ablation and local injection of the immunostimulant bacillus Calmette-Guérin induces antitumor immunity in the lung and at a distant VX2 tumor in a rabbit model. J Vasc Interv Radiol 2015; 26 (02) 271-278
  • 85 Thakur A, Littrup P, Paul EN, Adam B, Heilbrun LK, Lum LG. Induction of specific cellular and humoral responses against renal cell carcinoma after combination therapy with cryoablation and granulocyte-macrophage colony stimulating factor: a pilot study. J Immunother 2011; 34 (05) 457-467
  • 86 Si T, Guo Z, Hao X. Combined cryoablation and GM-CSF treatment for metastatic hormone refractory prostate cancer. J Immunother 2009; 32 (01) 86-91
  • 87 Niu L, Chen J, He L. , et al. Combination treatment with comprehensive cryoablation and immunotherapy in metastatic pancreatic cancer. Pancreas 2013; 42 (07) 1143-1149
  • 88 Niu LZ, Li JL, Zeng JY. , et al. Combination treatment with comprehensive cryoablation and immunotherapy in metastatic hepatocellular cancer. World J Gastroenterol 2013; 19 (22) 3473-3480
  • 89 Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol 2017; 31: 37-54
  • 90 Liang S, Niu L, Xu K. , et al. Tumor cryoablation in combination with natural killer cells therapy and Herceptin in patients with HER2-overexpressing recurrent breast cancer. Mol Immunol 2017; 92: 45-53
  • 91 Lin M, Xu K, Liang S. , et al. Prospective study of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced renal cell cancer. Immunol Lett 2017; 184: 98-104
  • 92 Lin M, Liang SZ, Wang XH. , et al. Clinical efficacy of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced non-small cell lung cancer. Immunol Res 2017; 65 (04) 880-887
  • 93 Yang Y, Qin Z, Du D. , et al. Safety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer. Cardiovasc Intervent Radiol 2019; 42 (01) 48-59
  • 94 Erinjeri JP, Fine GC, Adema GJ. , et al. Immunotherapy and the interventional oncologist: challenges and opportunities—a society of interventional oncology white paper. Radiology 2019; 292 (01) 25-34