CC BY-NC-ND 4.0 · Yearb Med Inform 2020; 29(01): 184-187
DOI: 10.1055/s-0040-1701985
Section 8: Bioinformatics and Translational Informatics
Survey
Georg Thieme Verlag KG Stuttgart

Untangling Data in Precision Oncology – A Model for Chronic Diseases?

Xosé M. Fernández
1   Institut Curie, Paris, France
› Author Affiliations
Further Information

Publication History

Publication Date:
21 August 2020 (online)

Summary

Objectives: Any attempt to introduce new data types in the entangled hospital infrastructure should help to unravel old knots without tangling new ones. Health data from a wide range of sources has become increasingly available. We witness an insatiable thirst for data in oncology as treatment paradigms are shifting to targeted molecular therapies.

Methods: From nineteenth-century medical notes consisting entirely of narrative description to standardised forms recording physical examination and medical notes, we have nowadays moved to electronic health records (EHRs). All our analogue medical records are rendered as sequences of zeros and ones changing how we capture and share data. The challenge we face is to offload the analysis without entrusting a machine (or algorithms) to make major decisions about a diagnosis, a treatment, or a surgery, keeping the human oversight. Computers don’t have judgment, they lack context.

Results: EHRs have become the latest addition to our toolset to look after patients. Moore’s law and general advances in computation have contributed to make EHRs a cornerstone of Molecular Tumour Boards, presenting a detailed and unique description of a tumour and treatment options.

Conclusions: Precision oncology, as a systematic approach matching the most accurate and effective treatment to each individual cancer patient, based on a molecular profile, is already expanding to other disease areas.

 
  • References

  • 1 Saunders G, Baudis M, Becker R, Beltrán S, Béroud C, Birney E. et al. Leveraging European infrastructures to access 1 million human genomes by 2022. Nat Rev Genet 2019; 20 (11) 693-701
  • 2 Perakslis E, Coravos A. Is health-care data the new blood?. Lancet Digit Health 2019; 1 (01) PE8
  • 3 Bodkin JA, Coleman MJ, Godfrey LJ, Carvalho CMB, Morgan CJ, Suckow RF. et al. Targeted Treatment of Individuals With Psychosis Carrying a Copy Number Variant Containing a Genomic Triplication of the Glycine Decarboxylase Gene. Biol Psychiatry 2019; 86 (07) 23-535
  • 4 Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015; 21: 121-31
  • 5 Fuster-García C, García-García G, González-Romero E, Jaijo T, Sequedo MD, Ayuso C. et al USH2A Gene Editing Using the CRISPR System. Mol Ther Nucleic Acids 2017; 8: 529-41
  • 6 Baruch K, Deczkowska A, Rosenzweig N, Tsitsou-Kampeli A, Sharif AM, Matcovitch-Natan O. et al. PD-1 Immune Checkpoint Blockade Reduces Pathology and Improves Memory in Mouse Models of Alzheimer’s Disease. Nat Med 2016; 22 (02) 135-7
  • 7 Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 2018; 6 (01) 8
  • 8 Schwartz M, Arad M, Ben-Yehuda H. Potential Immunotherapy for Alzheimer Disease and Age-Related Dementia. Dialogues Clin Neurosci 2019; 21 (01) 21-5
  • 9 Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol 2018; 29 (01) 84-91
  • 10 Topol EJ. High High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25: 44-56
  • 11 Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016; 6 (01) 26094
  • 12 Agustí A, Hogg JC. Update on the Pathogenesis of Chronic Obstructive Pulmonary Disease. N Engl J Med 2019; 381: 1248-56
  • 13 Wigner EG. The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics 1960; 13: 1
  • 14 Martincorena I, Campbell PJ. Somatic Mutation in Cancer Normal Cells. Science 2015; 34: 1483-9
  • 15 Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E. The Human Cell Atlas. eLife 2017; 6: e27041
  • 16 Rush R. Taking Note. N Engl J Med 2019; 381: 9
  • 17 Melnick ER, Dyrbye LN, Sinsky CA, Trockel M, West CP, Nedelec L. et al. The Association Between Perceived Electronic Health Record Usability and Professional Burnout Among US Physicians. Mayo Clin Proc 2019 doi: 10.1016/j.mayocp.2019.09.024
  • 18 Berwick DM, Hackbarth AD. Eliminating waste in US health care. JAMA 2012; 307 (14) 1513-6
  • 19 Heudel P, Livartowski A, Arveux P, Willm E, Jamain C. ConSoRe: un outil permettant de rentrer dans le monde du big data en santé. Bulletin du Cancer 2016; 103: 949 French
  • 20 Heudel P, Durand T, Fervers B, Gomez F, Rivoire M, Bachelot T. et al. Data-mining of 110172 electronic patient records with the ConSoRe tool: An analysis of second primary cancer in a comprehensive cancer center. Ann Oncol 2018; Suppl 8: viii482
  • 21 Warden R. Impact of caBIG on the European cancer community. Ecancermedicalscience 2011; 5: 225
  • 22 Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 2018; 29: 1836-42
  • 23 Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H. et al Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 2018; 15: 1-17
  • 24 Babic B, Gerke S, Evgeniou T, Cohen GG. Algorithms on regulatory lockdown in medicine. Science 2019; 366 6470 1202-4
  • 25 Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G. et al Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med 2019; 25: 433-8
  • 26 Lipton ZC, Steinhardt J. Troubling trends in Machine Learning scholarship. arXiv:1807.03341v2
  • 27 Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf 2019; 28: 231-7
  • 28 Smith SE, Mellor P, Ward AK, Kendall S, McDonald M, Vizeacoumar FS. et al. Molecular characterization of breast cancer cell lines through multiple omic approaches. Breast Cancer Res 2017; 19 (01) 65
  • 29 Im JS, Herrmann AC, Bernatchez C, Haymaker C, Molldrem JJ, Hong WK. et al. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer. PLoS One 2016; 11 (07) e010004
  • 30 Garcelon N, Neuraz A, Salomon R, Faour H, Benoit V, Delapalme A. et al A clinician friendly data warehouse oriented toward narrative reports: Dr. Warehouse. J Biomed Inform 2018; 80: 52
  • 31 Madec J, Bouzillé G, Riou C, Van Hille P, Merour C, Artigny ML. , et al. eHOP Clinical Data Warehouse: From a Prototype to the Creation of an Inter-Regional Clinical Data Centers Network. In: Ohno-Machado L, Séroussi B, editors. MEDINFO 2019: Health and Wellbeing e-Networks for All. Amsterdam: International Medical Informatics Association (IMIA) and IOS Press; 2019. p1536-7
  • 32 Pérol D, Robain M, Arveux P, Mathoulin-Pélissier S, Chamorey E, Asselainh B. et al. The ongoing French metastatic breast cancer (MBC) cohort: the example-based methodology of the Epidemiological Strategy and Medical Economics (ESMÉ). BMJ Open 2019; 9 (02) e023568
  • 33 Adamson AS, Wlech HG. Machine Learning and the Cancer-Diagnosis Problem — No Gold Standard. New Engl J Med 2019; 381: 2285-7
  • 34 Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13: 714-26
  • 35 Liu Y, Chen PHC, Krause J, Peng L. How to read articles that use machine learning: Users’ Guides to the Medical Literature. JAMA 2019; 322 (18) 1806-16
  • 36 Schwartz WB. Medicine and the computer. The promise and problems of change. N Engl J Med 1970; 283 (23) 1257
  • 37 Shortlife EH, Axline SG, Buchanan BG, Merigan TC, Cohen SN. An Artificial Intelligence program to advise physicians regarding antimicrobial therapy. Comput Biomed Res 1973; 6 (06) 544
  • 38 Wraith SM, Aikins JS, Buchanan BG, Clancey WJ, Davis R, Fagan LM. et al. Computerized consultation system for selection of antimicrobial therapy. Am J Hosp Pharm 1976; 33 (12) 1304
  • 39 Lenoir P, Chalès G. Efficacité de l’ADM sur les succès et les couts du diagnostic. Medical Informatics 1980; 5 (04) 309 French
  • 40 Lenoir P, Roger MJ, Frangeul C, Chalès G. Réalisation, développement et maintenance de la base de données ADM. Medical Informatics 1981; 6 (01) 51 French
  • 41 Whiting-O’Keefe QE, Simborg DW, Epstein WV, Warger A. A computerized summary medical record system can provide more information than the standard medical record. JAMA 1985; 254: 1185
  • 42 Steinhubl SR, Waalen J, Edwards AM, Ariniello LM, Mehta RR, Ebner GS. et al. Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. JAMA 2018; 320 (02) 146-55
  • 43 Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J. et al. Initial Sequencing and Analysis of the Human Genome. Nature 2001; 409 6822 860
  • 44 Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG. et al. The Sequence of the Human Genome. Science 2001; 291 5507 1304-51
  • 45 Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE. et al. Clinical Assessment Incorporating a Personal Genome. Lancet 2010; 375 9725 1525-35
  • 46 Abernethy AP, Etheredge LM, Ganz PG, Wallace P, German RR, Neti C. et al. Rapid-learning System for Cancer Care. J Clin Oncol 2010; 28 (27) 4268-74
  • 47 Basse C, Morel C, Alt M, Sablin MP, Franck C, Pierron G. et al. Relevance of a molecular tumour board (MTB) for patients’ enrolment in clinical trials: experience of the Institut Curie. ESMO Open 2018; 3: e00339
  • 48 Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. New York: Basic Books; 2019
  • 49 Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F. et al. Do no harm: a roadmap for responsible machine learning for health care. Nat Med 2019; 25 (09) 1337-40
  • 50 Bogers M, Chesbrough H, Moedas C. Open Innovation: Research, Practices and Policies. California Management Review 2018; 60 (02) 5-16